An exponential estimate for convolution powers
Studia Mathematica (1999)
- Volume: 137, Issue: 2, page 195-202
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Bellow and A. P. Calderón, A weak type inequality for convolution products, to appear.
- [2] A. Bellow, R. L. Jones and J. Rosenblatt, Almost everywhere convergence of convolution powers, Ergodic Theory Dynam. Systems 14 (1994) 415-432. Zbl0818.28005
- [3] R. A. Hunt, An estimate of the conjugate function, Studia Math. 44 (1972), 371-377. Zbl0219.42011
- [4] R. L. Jones, Ergodic theory and connections with analysis and probability, New York J. Math. 3A (1997), 31-67. Zbl0898.28005
- [5] R. L. Jones, Inequalities for the ergodic maximal function, Studia Math. 60 (1977), 111-129. Zbl0349.47007
- [6] R. L. Jones, R. Kaufman, J. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems 18 (1998), 889-935. Zbl0924.28009
- [7] R. L. Jones, I. Ostrovskii and J. Rosenblatt, Square functions in ergodic theory, ibid. 16 (1996), 267-305.
- [8] K. Reinhold, Convolution powers in , Illinois J. Math. 37 (1993), 666-679. Zbl0791.28012
- [9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501