A sharp rearrangement inequality for the fractional maximal operator
A. Cianchi; R. Kerman; B. Opic; L. Pick
Studia Mathematica (2000)
- Volume: 138, Issue: 3, page 277-284
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCianchi, A., et al. "A sharp rearrangement inequality for the fractional maximal operator." Studia Mathematica 138.3 (2000): 277-284. <http://eudml.org/doc/216705>.
@article{Cianchi2000,
abstract = {We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, $M_\{γ\}⨍$, by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of $M_γ$ between classical Lorentz spaces.},
author = {Cianchi, A., Kerman, R., Opic, B., Pick, L.},
journal = {Studia Mathematica},
keywords = {fractional maximal operator; nonincreasing rearrangement; classical Lorentz spaces; weighted norm inequalities},
language = {eng},
number = {3},
pages = {277-284},
title = {A sharp rearrangement inequality for the fractional maximal operator},
url = {http://eudml.org/doc/216705},
volume = {138},
year = {2000},
}
TY - JOUR
AU - Cianchi, A.
AU - Kerman, R.
AU - Opic, B.
AU - Pick, L.
TI - A sharp rearrangement inequality for the fractional maximal operator
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 3
SP - 277
EP - 284
AB - We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, $M_{γ}⨍$, by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of $M_γ$ between classical Lorentz spaces.
LA - eng
KW - fractional maximal operator; nonincreasing rearrangement; classical Lorentz spaces; weighted norm inequalities
UR - http://eudml.org/doc/216705
ER -
References
top- [AM] M. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735. Zbl0716.42016
- [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988. Zbl0647.46057
- [OK] B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. & Tech., Harlow 1990. Zbl0698.26007
- [S] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158. Zbl0705.42014
- [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure Appl. Math. 123, Academic Press, New York, 1986. Zbl0621.42001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.