On pointwise estimates for maximal and singular integral operators

A. Lerner

Studia Mathematica (2000)

  • Volume: 138, Issue: 3, page 285-291
  • ISSN: 0039-3223

Abstract

top
We prove two pointwise estimates relating some classical maximal and singular integral operators. In particular, these estimates imply well-known rearrangement inequalities, L ω p and BLO-norm inequalities

How to cite

top

Lerner, A.. "On pointwise estimates for maximal and singular integral operators." Studia Mathematica 138.3 (2000): 285-291. <http://eudml.org/doc/216706>.

@article{Lerner2000,
abstract = {We prove two pointwise estimates relating some classical maximal and singular integral operators. In particular, these estimates imply well-known rearrangement inequalities, $L^p_ω$ and BLO-norm inequalities},
author = {Lerner, A.},
journal = {Studia Mathematica},
keywords = {maximal function; singular integral; pointwise estimate; norm inequalities},
language = {eng},
number = {3},
pages = {285-291},
title = {On pointwise estimates for maximal and singular integral operators},
url = {http://eudml.org/doc/216706},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Lerner, A.
TI - On pointwise estimates for maximal and singular integral operators
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 3
SP - 285
EP - 291
AB - We prove two pointwise estimates relating some classical maximal and singular integral operators. In particular, these estimates imply well-known rearrangement inequalities, $L^p_ω$ and BLO-norm inequalities
LA - eng
KW - maximal function; singular integral; pointwise estimate; norm inequalities
UR - http://eudml.org/doc/216706
ER -

References

top
  1. [1] R. J. Bagby and D. S. Kurtz, Covering lemmas and the sharp function, Proc. Amer. Math. Soc. 93 (1985), 291-296. Zbl0531.42006
  2. [2] R. J. Bagby and D. S. Kurtz, A rearranged good λ inequality, Trans. Amer. Math. Soc. 293 (1986), 71-81. Zbl0585.42018
  3. [3] C. Bennett, Another characterization of BLO, Proc. Amer. Math. Soc. 85 (1982), 552-556. Zbl0512.42022
  4. [4] C. Bennett, R. DeVore and R. Sharpley, Weak- L and BMO, Ann. of Math. 113 (1981), 601-611. 
  5. [5] C. Bennett and R. Sharpley, Weak-type inequalities for H p and BMO, in: Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 201-229. Zbl0423.30026
  6. [6] K. M. Chong and N. M. Rice, Equimeasurable Rearrangements of Functions, Queen's Papers in Pure and Appl. Math. 28, Queen's University, Kingston, Ont., 1971. 
  7. [7] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 15 (1974), 241-250. Zbl0291.44007
  8. [8] R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 249-254. Zbl0432.42016
  9. [9] A. Córdoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-101. 
  10. [10] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  11. [11] B. Jawerth and A. Torchinsky, Local sharp maximal functions, J. Approx. Theory 43 (1985), 231-270. Zbl0565.42009
  12. [12] F. John, Quasi-isometric mappings, in: Seminari 1962-1963 di Analisi, Algebra, Geometria e Topologia (Roma, 1964), Ediz. Cremonese, Roma, 1965, 462-473. 
  13. [13] M. A. Leckband, Structure results on the maximal Hilbert transform and two-weight norm inequalities, Indiana Univ. Math. J. 34 (1985), 259-275. Zbl0586.42010
  14. [15] A. K. Lerner, On weighted estimates of non-increasing rearrangements, East J. Approx. 4 (1998), 277-290. Zbl0947.42012
  15. [16] S. Spanne, Sur l’interpolation entre les espaces L k p Φ , Ann. Scuola Norm. Sup. Pisa 20 (1966), 625-648. Zbl0203.12403
  16. [17] E. M. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, in: Proc. Sympos. Pure Math. 10, Amer. Math. Soc., 1967, 316-335. 
  17. [18] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
  18. [19] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. Zbl0232.42007
  19. [20] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544. Zbl0429.46016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.