On pointwise estimates for maximal and singular integral operators
Studia Mathematica (2000)
- Volume: 138, Issue: 3, page 285-291
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLerner, A.. "On pointwise estimates for maximal and singular integral operators." Studia Mathematica 138.3 (2000): 285-291. <http://eudml.org/doc/216706>.
@article{Lerner2000,
abstract = {We prove two pointwise estimates relating some classical maximal and singular integral operators. In particular, these estimates imply well-known rearrangement inequalities, $L^p_ω$ and BLO-norm inequalities},
author = {Lerner, A.},
journal = {Studia Mathematica},
keywords = {maximal function; singular integral; pointwise estimate; norm inequalities},
language = {eng},
number = {3},
pages = {285-291},
title = {On pointwise estimates for maximal and singular integral operators},
url = {http://eudml.org/doc/216706},
volume = {138},
year = {2000},
}
TY - JOUR
AU - Lerner, A.
TI - On pointwise estimates for maximal and singular integral operators
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 3
SP - 285
EP - 291
AB - We prove two pointwise estimates relating some classical maximal and singular integral operators. In particular, these estimates imply well-known rearrangement inequalities, $L^p_ω$ and BLO-norm inequalities
LA - eng
KW - maximal function; singular integral; pointwise estimate; norm inequalities
UR - http://eudml.org/doc/216706
ER -
References
top- [1] R. J. Bagby and D. S. Kurtz, Covering lemmas and the sharp function, Proc. Amer. Math. Soc. 93 (1985), 291-296. Zbl0531.42006
- [2] R. J. Bagby and D. S. Kurtz, A rearranged good λ inequality, Trans. Amer. Math. Soc. 293 (1986), 71-81. Zbl0585.42018
- [3] C. Bennett, Another characterization of BLO, Proc. Amer. Math. Soc. 85 (1982), 552-556. Zbl0512.42022
- [4] C. Bennett, R. DeVore and R. Sharpley, Weak- and BMO, Ann. of Math. 113 (1981), 601-611.
- [5] C. Bennett and R. Sharpley, Weak-type inequalities for and BMO, in: Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 201-229. Zbl0423.30026
- [6] K. M. Chong and N. M. Rice, Equimeasurable Rearrangements of Functions, Queen's Papers in Pure and Appl. Math. 28, Queen's University, Kingston, Ont., 1971.
- [7] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 15 (1974), 241-250. Zbl0291.44007
- [8] R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 249-254. Zbl0432.42016
- [9] A. Córdoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-101.
- [10] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
- [11] B. Jawerth and A. Torchinsky, Local sharp maximal functions, J. Approx. Theory 43 (1985), 231-270. Zbl0565.42009
- [12] F. John, Quasi-isometric mappings, in: Seminari 1962-1963 di Analisi, Algebra, Geometria e Topologia (Roma, 1964), Ediz. Cremonese, Roma, 1965, 462-473.
- [13] M. A. Leckband, Structure results on the maximal Hilbert transform and two-weight norm inequalities, Indiana Univ. Math. J. 34 (1985), 259-275. Zbl0586.42010
- [15] A. K. Lerner, On weighted estimates of non-increasing rearrangements, East J. Approx. 4 (1998), 277-290. Zbl0947.42012
- [16] S. Spanne, Sur l’interpolation entre les espaces , Ann. Scuola Norm. Sup. Pisa 20 (1966), 625-648. Zbl0203.12403
- [17] E. M. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, in: Proc. Sympos. Pure Math. 10, Amer. Math. Soc., 1967, 316-335.
- [18] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
- [19] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. Zbl0232.42007
- [20] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544. Zbl0429.46016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.