Régularité Besov-Orlicz du temps local Brownien

Yue Hu; Mohamed Mellouk

Studia Mathematica (2000)

  • Volume: 139, Issue: 1, page 1-7
  • ISSN: 0039-3223

Abstract

top
Let ( B t , t [ 0 , 1 ] ) be a linear Brownian motion starting from 0 and denote by ( L t ( x ) , t 0 , x ) its local time. We prove that the spatial trajectories of the Brownian local time have the same Besov-Orlicz regularity as the Brownian motion itself (i.e. for all t>0, a.s. the function x L t ( x ) belongs to the Besov-Orlicz space B M 2 , 1 / 2 with M 2 ( x ) = e | x | 2 - 1 ). Our result is optimal.

How to cite

top

Hu, Yue, and Mellouk, Mohamed. "Régularité Besov-Orlicz du temps local Brownien." Studia Mathematica 139.1 (2000): 1-7. <http://eudml.org/doc/216708>.

@article{Hu2000,
author = {Hu, Yue, Mellouk, Mohamed},
journal = {Studia Mathematica},
keywords = {spatial trajectories; Brownian local time; Besov-Orlicz space},
language = {fre},
number = {1},
pages = {1-7},
title = {Régularité Besov-Orlicz du temps local Brownien},
url = {http://eudml.org/doc/216708},
volume = {139},
year = {2000},
}

TY - JOUR
AU - Hu, Yue
AU - Mellouk, Mohamed
TI - Régularité Besov-Orlicz du temps local Brownien
JO - Studia Mathematica
PY - 2000
VL - 139
IS - 1
SP - 1
EP - 7
LA - fre
KW - spatial trajectories; Brownian local time; Besov-Orlicz space
UR - http://eudml.org/doc/216708
ER -

References

top
  1. [1] P. Biane et M. Yor, Sur la loi des temps locaux Browniens pris en un temps exponentiel, dans : Séminaire de Probabilités XXII, Lecture Notes in Math. 1321, Springer, 1988, 454-466. Zbl0652.60081
  2. [2] B. Boufoussi, Espaces de Besov: Caractérisations et applications, Thèse de l'Université Henri-Poincaré Nancy-I, 1994. 
  3. [3] B. Boufoussi, Régularité du temps local Brownien dans les espaces de Besov-Orlicz, Studia Math. 118 (1996), 145-156. 
  4. [4] B. Boufoussi et B. Roynette, Le temps local Brownien appartient presque sûrement à l’espace de Besov B p 1 / 2 , , C. R. Acad. Sci. Paris Sér. I 316 (1993), 843-848. Zbl0788.46035
  5. [5] C Z. Ciesielski, Orlicz spaces, spline systems, and Brownian motion, Constr. Approx. 9 (1993), 191-222. Zbl0814.46022
  6. [6] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204. 
  7. [7] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, 1993. Zbl0797.41016
  8. [8] P J. Peetre, New Thoughts on Besov spaces, Duke Univ. Math. Ser. I, 1976. Zbl0356.46038
  9. [9] D. Ray, Sojourn times of diffusion processes, Illinois J. Math. 7 (1963), 615-630. Zbl0118.13403
  10. [10] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 2nd ed., Springer, 1994. Zbl0804.60001
  11. [11] R B. Roynette, Mouvement Brownien et espaces Besov, Stochast. Stochast. Rep. 43 (1993), 221-260. Zbl0808.60071
  12. [12] T H. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425-433. Zbl0117.35502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.