Hypercyclic and chaotic weighted shifts
Studia Mathematica (2000)
- Volume: 139, Issue: 1, page 47-68
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGrosse-Erdmann, K.-G.. "Hypercyclic and chaotic weighted shifts." Studia Mathematica 139.1 (2000): 47-68. <http://eudml.org/doc/216710>.
@article{Grosse2000,
abstract = {Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors $(e_n)$ form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.},
author = {Grosse-Erdmann, K.-G.},
journal = {Studia Mathematica},
keywords = {F-spaces; topological sequence spaces; weighted shift operators; weighted pseudo-shifts; hypercyclic operators; chaotic operators; hypercyclic weighted shifts; F-sequence space; Schauder basis},
language = {eng},
number = {1},
pages = {47-68},
title = {Hypercyclic and chaotic weighted shifts},
url = {http://eudml.org/doc/216710},
volume = {139},
year = {2000},
}
TY - JOUR
AU - Grosse-Erdmann, K.-G.
TI - Hypercyclic and chaotic weighted shifts
JO - Studia Mathematica
PY - 2000
VL - 139
IS - 1
SP - 47
EP - 68
AB - Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors $(e_n)$ form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.
LA - eng
KW - F-spaces; topological sequence spaces; weighted shift operators; weighted pseudo-shifts; hypercyclic operators; chaotic operators; hypercyclic weighted shifts; F-sequence space; Schauder basis
UR - http://eudml.org/doc/216710
ER -
References
top- [1] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), 332-334. Zbl0758.58019
- [2] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, 1988. Zbl0663.47002
- [3] L. Bernal-González, Derivative and antiderivative operators and the size of complex domains, Ann. Polon. Math. 59 (1994), 267-274. Zbl0843.47019
- [4] L. Bernal-González, Universal functions for Taylor shifts, Complex Variables Theory Appl. 31 (1996), 121-129.
- [5] L. Bernal-González and A. Montes-Rodríguez, Universal functions for composition operators, ibid. 27 (1995), 47-56. Zbl0838.30032
- [6] J. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), 94-112.
- [7] G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473-475. Zbl55.0192.07
- [8] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Menlo Park, CA, 1986. Zbl0632.58005
- [9] P. L. Duren, Theory of Spaces, Academic Press, New York, 1970. Zbl0215.20203
- [10] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288. Zbl0618.30031
- [11] G. Godefroy and J. H. Shapiro, Operators with dense invariant cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269. Zbl0732.47016
- [12] K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987).
- [13] K.-G. Grosse-Erdmann, On the universal functions of G. R. MacLane, Complex Variables Theory Appl. 15 (1990), 193-196. Zbl0682.30021
- [14] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345-381. Zbl0933.47003
- [15] A. Gulisashvili and C. R. MacCluer, Linear chaos in the unforced quantum harmonic oscillator, J. Dynam. Systems Measurement Control 118 (1996), 337-338. Zbl0870.58057
- [16] D. A. Herrero and Z.-Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829. Zbl0724.47009
- [17] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, Cambridge Univ. Press, Cambridge, 1984.
- [18] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York, 1981.
- [19] C. Kitai, Invariant closed sets for linear operators, thesis, Univ. of Toronto, Toronto, 1982.
- [20] R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators, preprint. Zbl0997.47027
- [21] F. León-Saavedra and A. Montes-Rodríguez, Linear structure of hypercyclic vectors, J. Funct. Anal. 148 (1997), 524-545. Zbl0999.47009
- [22] F. León-Saavedra and A. Montes-Rodríguez, Spectral theory and hypercyclic subspaces, Trans. Amer. Math. Soc., to appear. Zbl0961.47003
- [23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin, 1977. Zbl0362.46013
- [24] G. R. MacLane, Sequences of derivatives and normal families, J. Anal. Math. 2 (1952/53), 72-87. Zbl0049.05603
- [25] F. Martínez-Giménez and A. Peris, Hypercyclic and chaotic backward shift operators on Köthe echelon spaces, preprint. Zbl1070.47024
- [26] V. Mathew, A note on hypercyclic operators on the space of entire sequences, Indian J. Pure Appl. Math. 25 (1994), 1181-1184. Zbl0821.47019
- [27] R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in , Studia Math. 54 (1975), 149-159. Zbl0317.46019
- [28] A. Peris, Chaotic polynomials on Fréchet spaces, Proc. Amer. Math. Soc. 127 (1999), 3601-3603. Zbl0942.46028
- [29] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. Zbl0174.44203
- [30] S. Rolewicz, Metric Linear Spaces, second ed., D. Reidel, Dordrecht, 1985. Zbl0573.46001
- [31] H. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), 765-770. Zbl0748.47023
- [32] H. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993-1004. Zbl0822.47030
- [33] I. Singer, Bases in Banach Spaces. I, Springer, Berlin, 1970.
- [34] I. Singer, Bases in Banach Spaces. II, Springer, Berlin, 1981.
- [35] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977.
- [36] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984. Zbl0531.40008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.