Hypercyclic and chaotic weighted shifts

K.-G. Grosse-Erdmann

Studia Mathematica (2000)

  • Volume: 139, Issue: 1, page 47-68
  • ISSN: 0039-3223

Abstract

top
Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors ( e n ) form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.

How to cite

top

Grosse-Erdmann, K.-G.. "Hypercyclic and chaotic weighted shifts." Studia Mathematica 139.1 (2000): 47-68. <http://eudml.org/doc/216710>.

@article{Grosse2000,
abstract = {Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors $(e_n)$ form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.},
author = {Grosse-Erdmann, K.-G.},
journal = {Studia Mathematica},
keywords = {F-spaces; topological sequence spaces; weighted shift operators; weighted pseudo-shifts; hypercyclic operators; chaotic operators; hypercyclic weighted shifts; F-sequence space; Schauder basis},
language = {eng},
number = {1},
pages = {47-68},
title = {Hypercyclic and chaotic weighted shifts},
url = {http://eudml.org/doc/216710},
volume = {139},
year = {2000},
}

TY - JOUR
AU - Grosse-Erdmann, K.-G.
TI - Hypercyclic and chaotic weighted shifts
JO - Studia Mathematica
PY - 2000
VL - 139
IS - 1
SP - 47
EP - 68
AB - Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors $(e_n)$ form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.
LA - eng
KW - F-spaces; topological sequence spaces; weighted shift operators; weighted pseudo-shifts; hypercyclic operators; chaotic operators; hypercyclic weighted shifts; F-sequence space; Schauder basis
UR - http://eudml.org/doc/216710
ER -

References

top
  1. [1] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), 332-334. Zbl0758.58019
  2. [2] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, 1988. Zbl0663.47002
  3. [3] L. Bernal-González, Derivative and antiderivative operators and the size of complex domains, Ann. Polon. Math. 59 (1994), 267-274. Zbl0843.47019
  4. [4] L. Bernal-González, Universal functions for Taylor shifts, Complex Variables Theory Appl. 31 (1996), 121-129. 
  5. [5] L. Bernal-González and A. Montes-Rodríguez, Universal functions for composition operators, ibid. 27 (1995), 47-56. Zbl0838.30032
  6. [6] J. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), 94-112. 
  7. [7] G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473-475. Zbl55.0192.07
  8. [8] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Menlo Park, CA, 1986. Zbl0632.58005
  9. [9] P. L. Duren, Theory of H p Spaces, Academic Press, New York, 1970. Zbl0215.20203
  10. [10] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288. Zbl0618.30031
  11. [11] G. Godefroy and J. H. Shapiro, Operators with dense invariant cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269. Zbl0732.47016
  12. [12] K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987). 
  13. [13] K.-G. Grosse-Erdmann, On the universal functions of G. R. MacLane, Complex Variables Theory Appl. 15 (1990), 193-196. Zbl0682.30021
  14. [14] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345-381. Zbl0933.47003
  15. [15] A. Gulisashvili and C. R. MacCluer, Linear chaos in the unforced quantum harmonic oscillator, J. Dynam. Systems Measurement Control 118 (1996), 337-338. Zbl0870.58057
  16. [16] D. A. Herrero and Z.-Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829. Zbl0724.47009
  17. [17] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, Cambridge Univ. Press, Cambridge, 1984. 
  18. [18] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York, 1981. 
  19. [19] C. Kitai, Invariant closed sets for linear operators, thesis, Univ. of Toronto, Toronto, 1982. 
  20. [20] R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators, preprint. Zbl0997.47027
  21. [21] F. León-Saavedra and A. Montes-Rodríguez, Linear structure of hypercyclic vectors, J. Funct. Anal. 148 (1997), 524-545. Zbl0999.47009
  22. [22] F. León-Saavedra and A. Montes-Rodríguez, Spectral theory and hypercyclic subspaces, Trans. Amer. Math. Soc., to appear. Zbl0961.47003
  23. [23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin, 1977. Zbl0362.46013
  24. [24] G. R. MacLane, Sequences of derivatives and normal families, J. Anal. Math. 2 (1952/53), 72-87. Zbl0049.05603
  25. [25] F. Martínez-Giménez and A. Peris, Hypercyclic and chaotic backward shift operators on Köthe echelon spaces, preprint. Zbl1070.47024
  26. [26] V. Mathew, A note on hypercyclic operators on the space of entire sequences, Indian J. Pure Appl. Math. 25 (1994), 1181-1184. Zbl0821.47019
  27. [27] R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L 2 , Studia Math. 54 (1975), 149-159. Zbl0317.46019
  28. [28] A. Peris, Chaotic polynomials on Fréchet spaces, Proc. Amer. Math. Soc. 127 (1999), 3601-3603. Zbl0942.46028
  29. [29] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. Zbl0174.44203
  30. [30] S. Rolewicz, Metric Linear Spaces, second ed., D. Reidel, Dordrecht, 1985. Zbl0573.46001
  31. [31] H. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), 765-770. Zbl0748.47023
  32. [32] H. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993-1004. Zbl0822.47030
  33. [33] I. Singer, Bases in Banach Spaces. I, Springer, Berlin, 1970. 
  34. [34] I. Singer, Bases in Banach Spaces. II, Springer, Berlin, 1981. 
  35. [35] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977. 
  36. [36] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984. Zbl0531.40008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.