Stochastic representation of reflecting diffusions corresponding to divergence form operators

Andrzej Rozkosz; Leszek Słomiński

Studia Mathematica (2000)

  • Volume: 139, Issue: 2, page 141-174
  • ISSN: 0039-3223

Abstract

top
We obtain a stochastic representation of a diffusion corresponding to a uniformly elliptic divergence form operator with co-normal reflection at the boundary of a bounded C 2 -domain. We also show that the diffusion is a Dirichlet process for each starting point inside the domain.

How to cite

top

Rozkosz, Andrzej, and Słomiński, Leszek. "Stochastic representation of reflecting diffusions corresponding to divergence form operators." Studia Mathematica 139.2 (2000): 141-174. <http://eudml.org/doc/216716>.

@article{Rozkosz2000,
abstract = {We obtain a stochastic representation of a diffusion corresponding to a uniformly elliptic divergence form operator with co-normal reflection at the boundary of a bounded $C^2$-domain. We also show that the diffusion is a Dirichlet process for each starting point inside the domain.},
author = {Rozkosz, Andrzej, Słomiński, Leszek},
journal = {Studia Mathematica},
keywords = {elliptic divergence form operator; co-normal reflection; Dirichlet process},
language = {eng},
number = {2},
pages = {141-174},
title = {Stochastic representation of reflecting diffusions corresponding to divergence form operators},
url = {http://eudml.org/doc/216716},
volume = {139},
year = {2000},
}

TY - JOUR
AU - Rozkosz, Andrzej
AU - Słomiński, Leszek
TI - Stochastic representation of reflecting diffusions corresponding to divergence form operators
JO - Studia Mathematica
PY - 2000
VL - 139
IS - 2
SP - 141
EP - 174
AB - We obtain a stochastic representation of a diffusion corresponding to a uniformly elliptic divergence form operator with co-normal reflection at the boundary of a bounded $C^2$-domain. We also show that the diffusion is a Dirichlet process for each starting point inside the domain.
LA - eng
KW - elliptic divergence form operator; co-normal reflection; Dirichlet process
UR - http://eudml.org/doc/216716
ER -

References

top
  1. [1] D. J. Aldous, Stopping time and tightness, Ann. Probab. 6 (1979), 335-340. Zbl0391.60007
  2. [2] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa 22 (1968), 607-693. Zbl0182.13802
  3. [3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201
  4. [4] F. Coquet and L. Słomiński, On the convergence of Dirichlet processes, Bernoulli 5 (1999), 615-639. Zbl0953.60001
  5. [5] H. Föllmer, Dirichlet processes, in: Stochastic Integrals (Durham, 1980), D. Williams (ed.), Lecture Notes in Math. 851, Springer, Berlin, 1981, 476-478. 
  6. [6] H. Föllmer, P. Protter and A. N. Shiryaev, Quadratic covariation and an extension of Itô's formula, Bernoulli 1 (1995), 149-169. Zbl0851.60048
  7. [7] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964. Zbl0144.34903
  8. [8] M. Fukushima, On a decomposition of additive functionals in the strict sense for a symmetric Markov process, in: Dirichlet Forms and Stochastic Processes (Beijing, 1993), Z. Ma, M. Röckner and J. Yan (eds.), de Gruyter, Berlin, 1994, 155-169. 
  9. [9] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin, 1994. 
  10. [10] M. Fukushima and M. Tomisaki, Reflecting diffusions on Lipschitz domains with cusps-analytic construction and Skorokhod representation, Potential Anal. 4 (1995), 377-408. Zbl0840.60070
  11. [11] M. Fukushima and M. Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Related Fields 106 (1996), 521-557. Zbl0867.60047
  12. [12] A. K. Gushchin, The estimates of the solutions of boundary value problems for a second order parabolic equation, Trudy Mat. Inst. Steklov. 126 (1973), 5-45 (in Russian). 
  13. [13] A. K. Gushchin, Uniform stabilization of solutions of the second mixed problem for a parabolic equation, Mat. Sb. 119 (1982), 451-508 (in Russian). 
  14. [14] U. G. Haussmann and E. Pardoux, Time reversal of diffusions, Ann. Probab. 14 (1986), 1188-1205. Zbl0607.60065
  15. [15] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987. Zbl0635.60021
  16. [16] A. Jakubowski, J. Mémin et G. Pages, Convergence en loi des suites d’intégrales stochastiques sur l’espace D 1 de Skorokhod, Probab. Theory Related Fields 81 (1989), 111-137. Zbl0638.60049
  17. [17] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985. Zbl0588.35003
  18. [18] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monogr. 23, Amer. Math. Soc., Providence, RI, 1968. 
  19. [19] P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), 511-537. Zbl0598.60060
  20. [20] T. J. Lyons and T. S. Zhang, Decomposition of Dirichlet processes and its application, Ann. Probab. 22 (1994), 494-524. Zbl0804.60044
  21. [21] T. J. Lyons and W. A. Zheng, A crossing estimate for the canonical process on a Dirichlet space and a tightness result, Astérisque 157-158 (1988), 249-271. Zbl0654.60059
  22. [22] T. J. Lyons and W. A. Zheng, On conditional diffusion processes, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 243-255. Zbl0715.60097
  23. [23] A. Millet, D. Nualart and M. Sanz, Integration by parts and time reversal for diffusion processes, Ann. Probab. 17 (1989) 208-238. Zbl0681.60077
  24. [24] A. Rozkosz, Weak convergence of diffusions corresponding to divergence form operators, Stochastics Stochastics Rep. 57 (1996), 129-157. Zbl0885.60067
  25. [25] A. Rozkosz, Stochastic representation of diffusions corresponding to divergence form operators, Stochastic Process. Appl. 63 (1996), 11-33. Zbl0870.60073
  26. [26] A. Rozkosz, On Dirichlet processes associated with second order divergence form operators, Potential Anal. (2000), to appear. 
  27. [27] A. Rozkosz and L. Słomiński, On existence and stability of weak solutions of multidimensional stochastic differential equations with measurable coefficients, Stochastic Process. Appl. 37 (1991), 187-197. Zbl0728.60066
  28. [28] A. Rozkosz and L. Słomiński, Extended convergence of Dirichlet processes, Stochastics Stochastics Rep. 65 (1998), 79-109. Zbl0917.60076
  29. [29] L. Słomiński, Necessary and sufficient conditions for extended convergence of semimartingales, Probab. Math. Statist. 7 (1986), 77-93. Zbl0622.60038
  30. [30] D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24 (1971), 147-225. Zbl0227.76131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.