Composition operators and the Hilbert matrix

E. Diamantopoulos; Aristomenis Siskakis

Studia Mathematica (2000)

  • Volume: 140, Issue: 2, page 191-198
  • ISSN: 0039-3223

Abstract

top
The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.

How to cite

top

Diamantopoulos, E., and Siskakis, Aristomenis. "Composition operators and the Hilbert matrix." Studia Mathematica 140.2 (2000): 191-198. <http://eudml.org/doc/216762>.

@article{Diamantopoulos2000,
abstract = {The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.},
author = {Diamantopoulos, E., Siskakis, Aristomenis},
journal = {Studia Mathematica},
keywords = {Hilbert inequality; Hilbert matrix; Hardy spaces; Hankel operator},
language = {eng},
number = {2},
pages = {191-198},
title = {Composition operators and the Hilbert matrix},
url = {http://eudml.org/doc/216762},
volume = {140},
year = {2000},
}

TY - JOUR
AU - Diamantopoulos, E.
AU - Siskakis, Aristomenis
TI - Composition operators and the Hilbert matrix
JO - Studia Mathematica
PY - 2000
VL - 140
IS - 2
SP - 191
EP - 198
AB - The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.
LA - eng
KW - Hilbert inequality; Hilbert matrix; Hardy spaces; Hankel operator
UR - http://eudml.org/doc/216762
ER -

References

top
  1. [CS] J. A. Cima and D. A. Stegenga, Hankel operators on H p , in: Analysis in Urbana, Vol. I, London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, 1989, 133-150. 
  2. [DU] P. L. Duren, Theory of H p Spaces, Academic Press, New York, 1970. 
  3. [CM] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995. Zbl0873.47017
  4. [HLP] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1988. Zbl0634.26008
  5. [PA] J. R. Partington, An Introduction to Hankel Operators, London Math. Soc. Student Texts 13, Cambridge Univ. Press, 1988. 
  6. [SH] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993. 
  7. [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1978. 

NotesEmbed ?

top

You must be logged in to post comments.