# Geometry of Banach spaces and biorthogonal systems

S. Dilworth; Maria Girardi; W. Johnson

Studia Mathematica (2000)

- Volume: 140, Issue: 3, page 243-271
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topDilworth, S., Girardi, Maria, and Johnson, W.. "Geometry of Banach spaces and biorthogonal systems." Studia Mathematica 140.3 (2000): 243-271. <http://eudml.org/doc/216766>.

@article{Dilworth2000,

abstract = {A separable Banach space X contains $ℓ_1$ isomorphically if and only if X has a bounded fundamental total $wc_\{0\}*$-stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total $wc_\{0\}*$-biorthogonal system.},

author = {Dilworth, S., Girardi, Maria, Johnson, W.},

journal = {Studia Mathematica},

keywords = {geometric properties of a Banach space; bounded fundamental total biorthogonal system; Schur property},

language = {eng},

number = {3},

pages = {243-271},

title = {Geometry of Banach spaces and biorthogonal systems},

url = {http://eudml.org/doc/216766},

volume = {140},

year = {2000},

}

TY - JOUR

AU - Dilworth, S.

AU - Girardi, Maria

AU - Johnson, W.

TI - Geometry of Banach spaces and biorthogonal systems

JO - Studia Mathematica

PY - 2000

VL - 140

IS - 3

SP - 243

EP - 271

AB - A separable Banach space X contains $ℓ_1$ isomorphically if and only if X has a bounded fundamental total $wc_{0}*$-stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total $wc_{0}*$-biorthogonal system.

LA - eng

KW - geometric properties of a Banach space; bounded fundamental total biorthogonal system; Schur property

UR - http://eudml.org/doc/216766

ER -

## References

top- [DJ] W. J. Davis and W. B. Johnson, On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), 173-179. Zbl0256.46026
- [D1] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
- [D2] J. Diestel, A survey of results related to the Dunford-Pettis property, in: Proc. Conf. on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, NC, 1979), Amer. Math. Soc., Providence, RI, 1980, 15-60.
- [DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, with a foreword by B. J. Pettis, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
- [DRT] P. N. Dowling, N. Randrianantoanina and B. Turett, Remarks on James's distortion theorems, Bull. Austral. Math. Soc. 57 (1998), 49-54. Zbl0915.46013
- [Dv] A. Dvoretzky, Some results on convex bodies and Banach spaces, in: Proc. Internat. Sympos. on Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem, 1961, 123-160.
- [E] P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309-317. Zbl0267.46012
- [FS] C. Foiaş and I. Singer, On bases in C([0,1]) and L([0,1]), Rev. Roumaine Math. Pures Appl. 10 (1965), 931-960. Zbl0141.31102
- [GK] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. Zbl0708.47031
- [H1] J. Hagler, Embeddings of ${l}^{1}$ into conjugate Banach spaces, Ph.D. dissertation, Univ. of California, Berkeley, CA, 1972.
- [H2] J. Hagler, Some more Banach spaces which contain ${\ell}_{1}$, Studia Math. 46 (1973), 35-42. Zbl0251.46023
- [HJ] J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), 325-330. Zbl0365.46019
- [JR] W. B. Johnson and H. P. Rosenthal, On ω*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77-92.
- [LT1] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. Zbl0362.46013
- [LT2] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergeb. Math. Grenzgeb. 97, Springer, Berlin, 1979. Zbl0403.46022
- [LT3] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes in Math. 338, Springer, Berlin, 1973, Zbl0259.46011
- [M] A. I. Markushevich, On a basis in the wide sense for linear spaces, Dokl. Akad. Nauk SSSR 41 (1943), 241-244.
- [Mil] V. D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspekhi Mat. Nauk 26 (1971), no. 6, 73-149.
- [OP] R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in ${L}^{2}$, Studia Math. 54 (1975), 149-159. Zbl0317.46019
- [P] A. Pełczyński, All separable Banach spaces admit for every ε>0 fundamental total and bounded by 1+ε biorthogonal sequences, ibid. 55 (1976), 295-304. Zbl0336.46023
- [P1] A. Pełczyński, On Banach spaces containing ${L}_{1}\left(\mu \right)$, ibid. 30 (1968), 231-246.
- [S1] I. Singer, Bases in Banach Spaces. I, Grundlehren Math. Wiss. 154, Springer, New York, 1970.
- [S2] I. Singer, On biorthogonal systems and total sequences of functionals, Math. Ann. 193 (1971), 183-188. Zbl0207.43004
- [W] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, Cambridge, 1991. Zbl0724.46012

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.