Weighted weak type (1,1) estimates for oscillatory singular integrals

Shuichi Sato

Studia Mathematica (2000)

  • Volume: 141, Issue: 1, page 1-24
  • ISSN: 0039-3223

Abstract

top
We consider the A 1 -weights and prove the weighted weak type (1,1) inequalities for certain oscillatory singular integrals.

How to cite

top

Sato, Shuichi. "Weighted weak type (1,1) estimates for oscillatory singular integrals." Studia Mathematica 141.1 (2000): 1-24. <http://eudml.org/doc/216770>.

@article{Sato2000,
abstract = {We consider the $A_1$-weights and prove the weighted weak type (1,1) inequalities for certain oscillatory singular integrals.},
author = {Sato, Shuichi},
journal = {Studia Mathematica},
keywords = {rough operators; oscillatory singular integrals; weighted weak space; Calderón-Zygmund convolution kernel; oscillatory singular integral operator},
language = {eng},
number = {1},
pages = {1-24},
title = {Weighted weak type (1,1) estimates for oscillatory singular integrals},
url = {http://eudml.org/doc/216770},
volume = {141},
year = {2000},
}

TY - JOUR
AU - Sato, Shuichi
TI - Weighted weak type (1,1) estimates for oscillatory singular integrals
JO - Studia Mathematica
PY - 2000
VL - 141
IS - 1
SP - 1
EP - 24
AB - We consider the $A_1$-weights and prove the weighted weak type (1,1) inequalities for certain oscillatory singular integrals.
LA - eng
KW - rough operators; oscillatory singular integrals; weighted weak space; Calderón-Zygmund convolution kernel; oscillatory singular integral operator
UR - http://eudml.org/doc/216770
ER -

References

top
  1. [1] S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Math. Soc. 281 (1984), 77-107. Zbl0531.42005
  2. [2] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. Zbl0667.42007
  3. [3] S. Chanillo, D. S. Kurtz and G. Sampson, Weighted weak (1,1) and weighted L p estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. Zbl0594.42007
  4. [4] M. Christ, Hilbert transforms along curves, I: Nilpotent groups, Ann. of Math. 122 (1985), 575-596. Zbl0593.43011
  5. [5] M. Christ, Weak type (1,1) bounds for rough operators, ibid. 128 (1988), 19-42. Zbl0666.47027
  6. [6] M. Christ, Weak type endpoint bounds for Bochner-Riesz multipliers, Rev. Mat. Iberoamericana 3 (1987), 25-31. Zbl0726.42009
  7. [7] M. Christ and J. L. Rubio de Francia, Weak type (1,1) bounds for rough operators, II, Invent. Math. 93 (1988), 225-237. Zbl0695.47052
  8. [8] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer, 1983. Zbl0508.42021
  9. [9] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
  10. [10] S. Sato, Some weighted weak type estimates for rough operators, Math. Nachr. 187 (1997), 211-240. Zbl0926.42012
  11. [11] A. Vargas, Weighted weak type (1,1) bounds for rough operators, J. London Math. Soc. (2) 54 (1996), 297-310 Zbl0884.42011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.