Limit laws for products of free and independent random variables
Hari Bercovici; Vittorino Pata
Studia Mathematica (2000)
- Volume: 141, Issue: 1, page 43-52
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Bercovici and V. Pata, Classical versus free domains of attraction, Math. Res. Lett. 2 (1995), 791-795. Zbl0846.60023
- [2] H. Bercovici and V. Pata, Stable laws and domains of attraction in free probability theory, with an appendix by P. Biane, Ann. of Math. 149 (1999), 1023-1060. Zbl0945.46046
- [3] H. Bercovici and V. Pata, Functions of regular variation and freely stable laws, Ann. Mat. Pura Appl., to appear. Zbl1072.46044
- [4] H. Bercovici and D. Voiculescu, Lévy-Hinčin type theorems for multiplicative and additive free convolution, Pacific J. Math. 153 (1992), 217-248. Zbl0769.60013
- [5] H. Bercovici and D. Voiculescu, Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), 733-773. Zbl0806.46070
- [6] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Cambridge, MA, 1954. Zbl0056.36001
- [7] B. V. Gnedenko and A. N. Kolmogorov, Multiplication of certain non-commuting random variables, J. Operator Theory 18 (1987), 223-235.
- [8] D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, CRM Monogr. Ser. 1, Amer. Math. Soc., Providence, RI, 1992.