Dirichlet problem for parabolic equations on Hilbert spaces

Anna Talarczyk

Studia Mathematica (2000)

  • Volume: 141, Issue: 2, page 109-142
  • ISSN: 0039-3223

Abstract

top
We study a linear second order parabolic equation in an open subset of a separable Hilbert space, with the Dirichlet boundary condition. We prove that a probabilistic formula, analogous to one obtained in the finite-dimensional case, gives a solution to this equation. We also give a uniqueness result.

How to cite

top

Talarczyk, Anna. "Dirichlet problem for parabolic equations on Hilbert spaces." Studia Mathematica 141.2 (2000): 109-142. <http://eudml.org/doc/216776>.

@article{Talarczyk2000,
abstract = {We study a linear second order parabolic equation in an open subset of a separable Hilbert space, with the Dirichlet boundary condition. We prove that a probabilistic formula, analogous to one obtained in the finite-dimensional case, gives a solution to this equation. We also give a uniqueness result.},
author = {Talarczyk, Anna},
journal = {Studia Mathematica},
keywords = {existence and uniqueness; probabilistic formula},
language = {eng},
number = {2},
pages = {109-142},
title = {Dirichlet problem for parabolic equations on Hilbert spaces},
url = {http://eudml.org/doc/216776},
volume = {141},
year = {2000},
}

TY - JOUR
AU - Talarczyk, Anna
TI - Dirichlet problem for parabolic equations on Hilbert spaces
JO - Studia Mathematica
PY - 2000
VL - 141
IS - 2
SP - 109
EP - 142
AB - We study a linear second order parabolic equation in an open subset of a separable Hilbert space, with the Dirichlet boundary condition. We prove that a probabilistic formula, analogous to one obtained in the finite-dimensional case, gives a solution to this equation. We also give a uniqueness result.
LA - eng
KW - existence and uniqueness; probabilistic formula
UR - http://eudml.org/doc/216776
ER -

References

top
  1. [1] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Academic Press, 1968. Zbl0169.49204
  2. [2] P. Cannarsa and G. Da Prato, A semigroup approach to Kolmogoroff equations in Hilbert spaces, Appl. Math. Lett. 4 (1991), 49-52. Zbl0748.35052
  3. [3] P. Cannarsa and G. Da Prato, On functional analysis approach to parabolic equations in infinite dimensions, J. Funct. Anal. 118 (1993), 22-42. Zbl0787.35115
  4. [4] Yu. Daleckij, Differential equations with functional derivatives and stochastic equations for generalized random processes, Dokl. Akad. Nauk SSSR 166 (1966), 1035-1038 (in Russian). 
  5. [5] G. Da Prato, Parabolic Equations in Hilbert Spaces, Scuola Normale Superiore Pisa, Lecture Notes, May 1996. Zbl0881.47018
  6. [6] G. Da Prato, Some results on parabolic evolution equations with infinitely many variables, J. Differential Equations 68 (1987), 281-297. Zbl0628.35044
  7. [7] G. Da Prato, Stochastic Evolution Equations by Semigroups Methods, Centre De Recerca Matematica, Barcelona, Quaderns 11 (1998). 
  8. [8] G. Da Prato, B. Gołdys and J. Zabczyk, Ornstein-Uhlenbeck semigroups in open sets of Hilbert spaces, C. R. Acad. Sci. Paris Sér. I 325 (1997), 433-438. Zbl0895.60083
  9. [9] G. Da Prato and J. Zabczyk, Smoothing properties of transition semigroups in Hilbert Spaces, Stochastics Stochastics Rep. 35 (1991), 63-77. Zbl0726.60062
  10. [10] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 44, Cambridge Univ. Press, 1992. Zbl0761.60052
  11. [11] E. B. Davies, One-Parameter Semigroups, Academic Press, 1980. Zbl0457.47030
  12. [12] E. B. Dynkin, Markov Processes, Springer, 1965. Zbl0132.37901
  13. [13] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975. Zbl0323.60056
  14. [14] L. Gross, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), 123-181. Zbl0165.16403
  15. [15] H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, Berlin, 1975. Zbl0306.28010
  16. [16] H. H. Kuo and M. A. Piech, Stochastic integrals and parabolic equations in abstract Wiener space, Bull. Amer. Math. Soc. 79 (1973), 478-482. Zbl0256.60028
  17. [17] A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in n , Studia Math. 128 (1998), 171-198. Zbl0899.35014
  18. [18] M. A. Piech, A fundamental solution of the parabolic equation on Hilbert space, J. Funct. Anal. 3 (1969), 85-114. Zbl0169.47103
  19. [19] E. Priola, Maximal regularity results for a homogeneous Dirichlet problem in a general half space of a Hilbert space, preprint, Scuola Normale Superiore di Pisa. Zbl0992.35108
  20. [20] B. Simon, The P ( ϕ ) 2 Euclidean (Quantum) Field Theory, Princeton Univ. Press, 1974. 
  21. [21] D. W. Stroock, Probability Theory, an Analytic View, Cambridge Univ. Press, 1993. Zbl0925.60004
  22. [22] J. Zabczyk, Infinite dimensional diffusions in modeling and analysis, Jahresber. Deutsch. Math.-Verein. 101 (1999), 47-59. Zbl0956.60083
  23. [23] J. Zabczyk, Parabolic Equations on Hilbert Spaces, Lecture Notes in Math. 1715, Springer, 1999. 
  24. [24] J. Zabczyk, Stopping problems on Polish spaces, Ann. Univ. Mariae Curie- Skłodowska 51 (1997), 181-199 Zbl0913.60039

NotesEmbed ?

top

You must be logged in to post comments.