Approximation by functions of compact support in Besov-Triebel-Lizorkin spaces on irregular domains
Studia Mathematica (2000)
- Volume: 142, Issue: 1, page 47-63
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, Berlin, 1996.
- [2] A. M. Caetano, On fractals which are not so terrible, in preparation. Zbl1002.28010
- [3] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985. Zbl0587.28004
- [4] W. Farkas and N. Jacob, Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions, preprint, 1999. Zbl0980.31005
- [5] A. Jonsson, Atomic decomposition of Besov spaces on closed sets, in: Function Spaces, Differential Operators and Nonlinear Analysis, H.-J. Schmeisser and H. Triebel (eds.), Teubner, Stuttgart, 1993, 285-289. Zbl0831.46028
- [6] A. Jonsson and H. Wallin, Function Spaces on Subsets of , Math. Reports 2, Harwood, London, 1984. Zbl0875.46003
- [7] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995. Zbl0819.28004
- [8] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166. Zbl0334.31004
- [9] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
- [10] H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997.
- [11] H. Triebel, Decompositions of function spaces, in: Topics in Nonlinear Analysis, the Herbert Amann Anniversary Volume, Birkhäuser, Basel, 1999, 691-730. Zbl0920.46027
- [12] H. Triebel, Function spaces and Dirichlet problems in fractal domains, preprint, Jena, 1999.
- [13] H. Triebel and H. Winkelvoss, Intrinsic atomic characterizations of function spaces on domains, Math. Z. 221 (1996), 647-673. Zbl0843.46022
- [14] H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math. 73 (1991), 117-125. Zbl0793.46015