Polydisc slicing in n

Krzysztof Oleszkiewicz; Aleksander Pełczyński

Studia Mathematica (2000)

  • Volume: 142, Issue: 3, page 281-294
  • ISSN: 0039-3223

Abstract

top
Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in n of codimension 1, v o l 2 n - 2 ( D n - 1 ) v o l 2 n - 2 ( H D n ) 2 v o l 2 n - 2 ( D n - 1 ) . The lower bound is attained if and only if H is orthogonal to the versor e j of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector e j + σ e k for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify n with 2 n ; by v o l k ( · ) we denote the usual k-dimensional volume in 2 n . The result is a complex counterpart of Ball’s [B1] result for cube slicing.

How to cite

top

Oleszkiewicz, Krzysztof, and Pełczyński, Aleksander. "Polydisc slicing in $ℂ^n$." Studia Mathematica 142.3 (2000): 281-294. <http://eudml.org/doc/216804>.

@article{Oleszkiewicz2000,
abstract = {Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in $ℂ^n$ of codimension 1, $vol_\{2n-2\}(D^\{n-1\}) ≤ vol_\{2n-2\}(H ∩ D^\{n\}) ≤ 2vol_\{2n-2\}(D^\{n-1\})$. The lower bound is attained if and only if H is orthogonal to the versor $e_\{j\}$ of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector $e_\{j\} + σe_\{k\}$ for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify $ℂ^n$ with $ℝ^\{2n\}$; by $vol_\{k\}(·)$ we denote the usual k-dimensional volume in $ℝ^\{2n\}$. The result is a complex counterpart of Ball’s [B1] result for cube slicing.},
author = {Oleszkiewicz, Krzysztof, Pełczyński, Aleksander},
journal = {Studia Mathematica},
keywords = {volume of section; Bessel functions; polydisc},
language = {eng},
number = {3},
pages = {281-294},
title = {Polydisc slicing in $ℂ^n$},
url = {http://eudml.org/doc/216804},
volume = {142},
year = {2000},
}

TY - JOUR
AU - Oleszkiewicz, Krzysztof
AU - Pełczyński, Aleksander
TI - Polydisc slicing in $ℂ^n$
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 3
SP - 281
EP - 294
AB - Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in $ℂ^n$ of codimension 1, $vol_{2n-2}(D^{n-1}) ≤ vol_{2n-2}(H ∩ D^{n}) ≤ 2vol_{2n-2}(D^{n-1})$. The lower bound is attained if and only if H is orthogonal to the versor $e_{j}$ of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector $e_{j} + σe_{k}$ for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify $ℂ^n$ with $ℝ^{2n}$; by $vol_{k}(·)$ we denote the usual k-dimensional volume in $ℝ^{2n}$. The result is a complex counterpart of Ball’s [B1] result for cube slicing.
LA - eng
KW - volume of section; Bessel functions; polydisc
UR - http://eudml.org/doc/216804
ER -

References

top
  1. [B1] K. Ball, Cube slicing in n , Proc. Amer. Math. Soc. 97 (1986), 465-473. 
  2. [B2] K. Ball, Volumes of sections of cubes and related problems, in: Geometric Aspects of Functional Analysis (1987-88), Lecture Notes in Math. 1376, Springer, Berlin, 1989, 251-260. 
  3. [Bar] F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335-361. 
  4. [F] W. Feller, Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1996. 
  5. [H] D. Hensley, Slicing the cube in R n and probability (bounds for the measure of a central cube slice in R n by probability methods), Proc. Amer. Math. Soc. 73 (1979), 95-100. Zbl0394.52006
  6. [KL] A. Koldobsky and M. Lifshits, Average volume of sections of star bodies, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA), 1996-2000, V. Milman and G. Schechtman (eds.), Lecture Notes in Math. 1745, Springer, 2000, 119-146. Zbl0973.52002
  7. [K] H. König, On the best constants in the Khintchine inequality for variables on the spheres, preprint, Kiel Universität, 1998. 
  8. [KK] H. König and S. Kwapień, Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors, Positivity, to appear. Zbl0998.60018
  9. [MP] M. Meyer and A. Pajor, Sections of the unit ball of l p n , J. Funct. Anal. 80 (1988), 109-123. Zbl0667.46004
  10. [NP] F. L. Nazarov and A. N. Podkorytov, Ball, Haagerup, and distribution functions, in: Complex Analysis, Operator Theory, and Related Topics: S. A. Vinogradov - In Memoriam, V. Havin and N. Nikolski (eds.), Oper. Theory Adv. Appl. 113, Birkhäuser, Basel, 2000, 247-268. 
  11. [P] G. Pólya, Berechnung eines bestimmten Integrals, Math. Ann. 74 (1913), 204-212. Zbl44.0357.02
  12. [RG] I. M. Ryshik and I. S. Gradstein, Tables of Series, Products and Integrals, Deutscher Verlag Wiss., Berlin, 1957. Zbl0080.33703
  13. [S] M. Schmuckenschläger, Volume of intersections and sections of the unit ball of l p n , Proc. Amer. Math. Soc. 126 (1998), 1527-1530. Zbl0896.52009
  14. [V] J. D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), 543-553. Zbl0465.52011
  15. [W] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1995. Zbl0849.33001

NotesEmbed ?

top

You must be logged in to post comments.