# Polydisc slicing in ${ℂ}^{n}$

Studia Mathematica (2000)

• Volume: 142, Issue: 3, page 281-294
• ISSN: 0039-3223

top

## Abstract

top
Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in ${ℂ}^{n}$ of codimension 1, $vo{l}_{2n-2}\left({D}^{n-1}\right)\le vo{l}_{2n-2}\left(H\cap {D}^{n}\right)\le 2vo{l}_{2n-2}\left({D}^{n-1}\right)$. The lower bound is attained if and only if H is orthogonal to the versor ${e}_{j}$ of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector ${e}_{j}+\sigma {e}_{k}$ for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify ${ℂ}^{n}$ with ${ℝ}^{2n}$; by $vo{l}_{k}\left(·\right)$ we denote the usual k-dimensional volume in ${ℝ}^{2n}$. The result is a complex counterpart of Ball’s [B1] result for cube slicing.

## How to cite

top

Oleszkiewicz, Krzysztof, and Pełczyński, Aleksander. "Polydisc slicing in $ℂ^n$." Studia Mathematica 142.3 (2000): 281-294. <http://eudml.org/doc/216804>.

@article{Oleszkiewicz2000,
abstract = {Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in $ℂ^n$ of codimension 1, $vol_\{2n-2\}(D^\{n-1\}) ≤ vol_\{2n-2\}(H ∩ D^\{n\}) ≤ 2vol_\{2n-2\}(D^\{n-1\})$. The lower bound is attained if and only if H is orthogonal to the versor $e_\{j\}$ of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector $e_\{j\} + σe_\{k\}$ for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify $ℂ^n$ with $ℝ^\{2n\}$; by $vol_\{k\}(·)$ we denote the usual k-dimensional volume in $ℝ^\{2n\}$. The result is a complex counterpart of Ball’s [B1] result for cube slicing.},
author = {Oleszkiewicz, Krzysztof, Pełczyński, Aleksander},
journal = {Studia Mathematica},
keywords = {volume of section; Bessel functions; polydisc},
language = {eng},
number = {3},
pages = {281-294},
title = {Polydisc slicing in $ℂ^n$},
url = {http://eudml.org/doc/216804},
volume = {142},
year = {2000},
}

TY - JOUR
AU - Oleszkiewicz, Krzysztof
AU - Pełczyński, Aleksander
TI - Polydisc slicing in $ℂ^n$
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 3
SP - 281
EP - 294
AB - Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in $ℂ^n$ of codimension 1, $vol_{2n-2}(D^{n-1}) ≤ vol_{2n-2}(H ∩ D^{n}) ≤ 2vol_{2n-2}(D^{n-1})$. The lower bound is attained if and only if H is orthogonal to the versor $e_{j}$ of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector $e_{j} + σe_{k}$ for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify $ℂ^n$ with $ℝ^{2n}$; by $vol_{k}(·)$ we denote the usual k-dimensional volume in $ℝ^{2n}$. The result is a complex counterpart of Ball’s [B1] result for cube slicing.
LA - eng
KW - volume of section; Bessel functions; polydisc
UR - http://eudml.org/doc/216804
ER -

## References

top
1. [B1] K. Ball, Cube slicing in ${ℝ}^{n}$, Proc. Amer. Math. Soc. 97 (1986), 465-473.
2. [B2] K. Ball, Volumes of sections of cubes and related problems, in: Geometric Aspects of Functional Analysis (1987-88), Lecture Notes in Math. 1376, Springer, Berlin, 1989, 251-260.
3. [Bar] F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335-361.
4. [F] W. Feller, Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1996.
5. [H] D. Hensley, Slicing the cube in ${R}^{n}$ and probability (bounds for the measure of a central cube slice in ${R}^{n}$ by probability methods), Proc. Amer. Math. Soc. 73 (1979), 95-100. Zbl0394.52006
6. [KL] A. Koldobsky and M. Lifshits, Average volume of sections of star bodies, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA), 1996-2000, V. Milman and G. Schechtman (eds.), Lecture Notes in Math. 1745, Springer, 2000, 119-146. Zbl0973.52002
7. [K] H. König, On the best constants in the Khintchine inequality for variables on the spheres, preprint, Kiel Universität, 1998.
8. [KK] H. König and S. Kwapień, Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors, Positivity, to appear. Zbl0998.60018
9. [MP] M. Meyer and A. Pajor, Sections of the unit ball of ${l}_{p}^{n}$, J. Funct. Anal. 80 (1988), 109-123. Zbl0667.46004
10. [NP] F. L. Nazarov and A. N. Podkorytov, Ball, Haagerup, and distribution functions, in: Complex Analysis, Operator Theory, and Related Topics: S. A. Vinogradov - In Memoriam, V. Havin and N. Nikolski (eds.), Oper. Theory Adv. Appl. 113, Birkhäuser, Basel, 2000, 247-268.
11. [P] G. Pólya, Berechnung eines bestimmten Integrals, Math. Ann. 74 (1913), 204-212. Zbl44.0357.02
12. [RG] I. M. Ryshik and I. S. Gradstein, Tables of Series, Products and Integrals, Deutscher Verlag Wiss., Berlin, 1957. Zbl0080.33703
13. [S] M. Schmuckenschläger, Volume of intersections and sections of the unit ball of ${l}_{p}^{n}$, Proc. Amer. Math. Soc. 126 (1998), 1527-1530. Zbl0896.52009
14. [V] J. D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), 543-553. Zbl0465.52011
15. [W] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1995. Zbl0849.33001

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.