On isomorphisms of standard operator algebras

Lajos Molnár

Studia Mathematica (2000)

  • Volume: 142, Issue: 3, page 295-302
  • ISSN: 0039-3223

Abstract

top
We show that between standard operator algebras every bijective map with a certain multiplicativity property related to Jordan triple isomorphisms of associative rings is automatically additive.

How to cite

top

Molnár, Lajos. "On isomorphisms of standard operator algebras." Studia Mathematica 142.3 (2000): 295-302. <http://eudml.org/doc/216805>.

@article{Molnár2000,
abstract = {We show that between standard operator algebras every bijective map with a certain multiplicativity property related to Jordan triple isomorphisms of associative rings is automatically additive.},
author = {Molnár, Lajos},
journal = {Studia Mathematica},
keywords = {operator algebras; Jordan triple isomorphisms; automatically additive},
language = {eng},
number = {3},
pages = {295-302},
title = {On isomorphisms of standard operator algebras},
url = {http://eudml.org/doc/216805},
volume = {142},
year = {2000},
}

TY - JOUR
AU - Molnár, Lajos
TI - On isomorphisms of standard operator algebras
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 3
SP - 295
EP - 302
AB - We show that between standard operator algebras every bijective map with a certain multiplicativity property related to Jordan triple isomorphisms of associative rings is automatically additive.
LA - eng
KW - operator algebras; Jordan triple isomorphisms; automatically additive
UR - http://eudml.org/doc/216805
ER -

References

top
  1. [1] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228. Zbl0691.16040
  2. [2] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496. Zbl0796.15001
  3. [3] J. Hakeda, Additivity of *-semigroup isomorphisms among *-algebras, Bull. London Math. Soc. 18 (1986), 51-56. Zbl0557.46037
  4. [4] I. N. Herstein, On a type of Jordan mappings, An. Acad. Bras. Cienc. 39 (1967), 357-360. Zbl0199.07503
  5. [5] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969. Zbl0232.16001
  6. [6] H. Kestelman, Automorphisms of the field of complex numbers, Proc. London Math. Soc. (2) 53 (1951), 1-12. Zbl0042.39304
  7. [7] W. S. Martindale III, When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969), 695-698. Zbl0175.02902
  8. [8] L. Molnár, *-semigroup endomorphisms of B(H), in: I. Gohberg (ed.), Proc. Memorial Conference for Béla Szőkefalvi-Nagy, Szeged, 1999, Oper. Theory Adv. Appl. (to appear). 
  9. [9] M. Omladič and P. Šemrl, Linear mappings that preserve potent operators, Proc. Amer. Math. Soc. 123 (1995), 1069-1074. Zbl0831.47026
  10. [10] P. G. Ovchinnikov, Automorphisms of the poset of skew projections, J. Funct. Anal. 115 (1993), 184-189. Zbl0806.46069
  11. [11] P. Šemrl, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995), 1851-1855. Zbl0824.47037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.