On isomorphisms of standard operator algebras
Studia Mathematica (2000)
- Volume: 142, Issue: 3, page 295-302
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228. Zbl0691.16040
- [2] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496. Zbl0796.15001
- [3] J. Hakeda, Additivity of *-semigroup isomorphisms among *-algebras, Bull. London Math. Soc. 18 (1986), 51-56. Zbl0557.46037
- [4] I. N. Herstein, On a type of Jordan mappings, An. Acad. Bras. Cienc. 39 (1967), 357-360. Zbl0199.07503
- [5] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969. Zbl0232.16001
- [6] H. Kestelman, Automorphisms of the field of complex numbers, Proc. London Math. Soc. (2) 53 (1951), 1-12. Zbl0042.39304
- [7] W. S. Martindale III, When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969), 695-698. Zbl0175.02902
- [8] L. Molnár, *-semigroup endomorphisms of B(H), in: I. Gohberg (ed.), Proc. Memorial Conference for Béla Szőkefalvi-Nagy, Szeged, 1999, Oper. Theory Adv. Appl. (to appear).
- [9] M. Omladič and P. Šemrl, Linear mappings that preserve potent operators, Proc. Amer. Math. Soc. 123 (1995), 1069-1074. Zbl0831.47026
- [10] P. G. Ovchinnikov, Automorphisms of the poset of skew projections, J. Funct. Anal. 115 (1993), 184-189. Zbl0806.46069
- [11] P. Šemrl, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995), 1851-1855. Zbl0824.47037