Universal divisors in Hardy spaces

E. Amar; C. Menini

Studia Mathematica (2000)

  • Volume: 143, Issue: 1, page 1-21
  • ISSN: 0039-3223

Abstract

top
We study a division problem in the Hardy classes H p ( ) of the unit ball of 2 which generalizes the H p corona problem, the generators being allowed to have common zeros. MPrecisely, if S is a subset of , we study conditions on a k -valued bounded Mholomorphic function B, with B | S = 0 , in order that for 1 ≤ p < ∞ and any function f H p ( ) with f | S = 0 there is a k -valued H p ( ) holomorphic function F with f = B·F, i.e. the module generated by the components of B in the Hardy class H p ( ) is the entire module M S : = f H p ( ) : f | S = 0 . As a special case, for S = ∅, we get the H p corona theorem.

How to cite

top

Amar, E., and Menini, C.. "Universal divisors in Hardy spaces." Studia Mathematica 143.1 (2000): 1-21. <http://eudml.org/doc/216806>.

@article{Amar2000,
abstract = {We study a division problem in the Hardy classes $H^\{p\}()$ of the unit ball of $ℂ^\{2\}$ which generalizes the $H^\{p\}$ corona problem, the generators being allowed to have common zeros. MPrecisely, if S is a subset of , we study conditions on a $ℂ^\{k\}$-valued bounded Mholomorphic function B, with $B_\{|S\} = 0$, in order that for 1 ≤ p < ∞ and any function $f ∈ H^\{p\}()$ with $f_\{|S\} = 0$ there is a $ℂ^\{k\}$-valued $H^\{p\}()$ holomorphic function F with f = B·F, i.e. the module generated by the components of B in the Hardy class $H^\{p\}()$ is the entire module $M_\{S\}:= \{f ∈ H^\{p\}(): f_\{|S\} = 0 \}$. As a special case, for S = ∅, we get the $H^\{p\}$ corona theorem.},
author = {Amar, E., Menini, C.},
journal = {Studia Mathematica},
keywords = {Hardy space; unit ball; divisors; corona problem},
language = {eng},
number = {1},
pages = {1-21},
title = {Universal divisors in Hardy spaces},
url = {http://eudml.org/doc/216806},
volume = {143},
year = {2000},
}

TY - JOUR
AU - Amar, E.
AU - Menini, C.
TI - Universal divisors in Hardy spaces
JO - Studia Mathematica
PY - 2000
VL - 143
IS - 1
SP - 1
EP - 21
AB - We study a division problem in the Hardy classes $H^{p}()$ of the unit ball of $ℂ^{2}$ which generalizes the $H^{p}$ corona problem, the generators being allowed to have common zeros. MPrecisely, if S is a subset of , we study conditions on a $ℂ^{k}$-valued bounded Mholomorphic function B, with $B_{|S} = 0$, in order that for 1 ≤ p < ∞ and any function $f ∈ H^{p}()$ with $f_{|S} = 0$ there is a $ℂ^{k}$-valued $H^{p}()$ holomorphic function F with f = B·F, i.e. the module generated by the components of B in the Hardy class $H^{p}()$ is the entire module $M_{S}:= {f ∈ H^{p}(): f_{|S} = 0 }$. As a special case, for S = ∅, we get the $H^{p}$ corona theorem.
LA - eng
KW - Hardy space; unit ball; divisors; corona problem
UR - http://eudml.org/doc/216806
ER -

References

top
  1. [1] D. & E. Amar, Sur les suites d'interpolation en plusieurs variables, Pacific J. Math. 75 (1978), 15-20. Zbl0392.32002
  2. [2] E. Amar, On the corona problem, J. Geom. Anal. 1 (1991), 291-305. Zbl0794.32007
  3. [3] E. Amar, Interpolating sequences for H ( ) in the ball of n , Ark. Mat., to appear. 
  4. [4] E. Amar et A. Bonami, Mesures de Carleson d’ordre α et solutions au bord de l’équation ¯ , Bull. Soc. Math. France 107 (1979), 23-48. Zbl0409.46035
  5. [5] M. Andersson and H. Carlsson, Estimates of solutions of the H p and BMOA corona problem, Math. Ann. 316 (2000), 83-102. 
  6. [6] G. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds, Part I, Russian Math. Surveys 32 (1977), no. 3, 59-130; Part II, Math. USSR-Sb. 31 (1977), no. 1, 63-94. 
  7. [7] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949. Zbl0172.41701
  8. [8] C. Horowitz, Factorization theorems for functions in the Bergman spaces, Duke Math. J. 44 (1977), 201-213. 
  9. [9] W. Rudin, Function Theory in the Unit Ball of n , Grundlehren Math. Wiss. 241, Springer,1980. 
  10. [10] H. Skoda, Valeurs au bord pour les solutions de l'équation d'', et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225-299. Zbl0351.31007
  11. [11] N. Varopoulos, BMO functions and the ¯ -equation, Pacific J. Math. 71 (1977), 221-273. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.