Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem
Zdzisław Brzeźniak; Jan van Neerven
Studia Mathematica (2000)
- Volume: 143, Issue: 1, page 43-74
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBrzeźniak, Zdzisław, and van Neerven, Jan. "Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem." Studia Mathematica 143.1 (2000): 43-74. <http://eudml.org/doc/216809>.
@article{Brzeźniak2000,
abstract = {Let H be a separable real Hilbert space and let E be a separable real Banach space. We develop a general theory of stochastic convolution of ℒ(H,E)-valued functions with respect to a cylindrical Wiener process $\{W_\{t\}^\{H\}\}_\{t ∈ [0,T]\}$ with Cameron-Martin space H. This theory is applied to obtain necessary and sufficient conditions for the existence of a weak solution of the stochastic abstract Cauchy problem (ACP) $dX_t = AX_tdt + BdW_t^H$ (t∈ [0,T]), $X_0 = 0$ almost surely, where A is the generator of a $C_0$-semigroup $\{S(t)\}_\{t ≥ 0\}$ of bounded linear operators on E and B ∈ ℒ(H,E) is a bounded linear operator. We further show that whenever a weak solution exists, it is unique, and given by a stochastic convolution $X_t = ∫^\{t\}_\{0\} S(t-s)BdW_\{s\}^\{H\}$.},
author = {Brzeźniak, Zdzisław, van Neerven, Jan},
journal = {Studia Mathematica},
language = {eng},
number = {1},
pages = {43-74},
title = {Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem},
url = {http://eudml.org/doc/216809},
volume = {143},
year = {2000},
}
TY - JOUR
AU - Brzeźniak, Zdzisław
AU - van Neerven, Jan
TI - Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem
JO - Studia Mathematica
PY - 2000
VL - 143
IS - 1
SP - 43
EP - 74
AB - Let H be a separable real Hilbert space and let E be a separable real Banach space. We develop a general theory of stochastic convolution of ℒ(H,E)-valued functions with respect to a cylindrical Wiener process ${W_{t}^{H}}_{t ∈ [0,T]}$ with Cameron-Martin space H. This theory is applied to obtain necessary and sufficient conditions for the existence of a weak solution of the stochastic abstract Cauchy problem (ACP) $dX_t = AX_tdt + BdW_t^H$ (t∈ [0,T]), $X_0 = 0$ almost surely, where A is the generator of a $C_0$-semigroup ${S(t)}_{t ≥ 0}$ of bounded linear operators on E and B ∈ ℒ(H,E) is a bounded linear operator. We further show that whenever a weak solution exists, it is unique, and given by a stochastic convolution $X_t = ∫^{t}_{0} S(t-s)BdW_{s}^{H}$.
LA - eng
UR - http://eudml.org/doc/216809
ER -
References
top- [ABB] S. Albeverio, A. M. Boutet de Monvel-Berthier and Z. Brzeźniak, The trace formula for Schrödinger operators from infinite dimensional oscillatory integrals, Math. Nachr. 182 (1996), 21-65. Zbl0866.58020
- [AC] A. Antoniadis and R. Carmona, Eigenfunction expansions for infinite dimensional Ornstein-Uhlenbeck processes, Probab. Theory Related Fields 74 (1987), 31-54. Zbl0586.60073
- [Bax] P. Baxendale, Gaussian measures on function spaces, Amer. J. Math. 98 (1976), 891-952. Zbl0384.28011
- [BRS] V. I. Bogachev, M. Röckner and B. Schmuland, Generalized Mehler semigroups and applications, Probab. Theory Related Fields 105 (1996), 193-225. Zbl0849.60066
- [Br1] Z. Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal. 4 (1995), 1-45. Zbl0831.35161
- [Br2] Z. Brzeźniak, On Sobolev and Besov spaces regularity of Brownian paths, Stochastics Stochastics Rep. 56 (1996), 1-15. Zbl0890.60077
- [Br3] Z. Brzeźniak, On stochastic convolutions in Banach spaces and applications, ibid. 61 (1997), 245-295.
- [BGN] Z. Brzeźniak, B. Goldys and J. M. A. M. van Neerven, Mean square continuity of Ornstein-Uhlenbeck processes in Banach spaces, in preparation. Zbl1037.60054
- [BN] Z. Brzeźniak and J. M. A. M. van Neerven, Equivalence of Banach space-valued Ornstein-Uhlenbeck processes, Stochastics Stochastics Rep. 69 (2000), 77-94. Zbl0956.60029
- [BP] Z. Brzeźniak and S. Peszat, Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Studia Math. 137 (1999), 261-299. Zbl0944.60075
- [Ca] R. Carmona, Tensor products of Gaussian measures, in: Proc. Conf. Vector Space Measures and Applications I (Dublin, 1977), Lecture Notes in Math. 644, Springer, 1978, 96-124.
- [DZ] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 44, Cambridge Univ. Press, Cambridge, 1992.
- [DS] D. A. Dawson and H. Salehi, Spatially homogeneous random evolutions, J. Multivariate Anal. 10 (1980), 141-180. Zbl0439.60051
- [DU] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
- [Di] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057-1071.
- [DFL] R. M. Dudley, J. Feldman and L. Le Cam, On seminorms and probabilities, and abstract Wiener spaces, Ann. of Math. 93 (1971), 390-408. Zbl0193.44603
- [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958.
- [Kuo] H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, 1975. Zbl0306.28010
- [MS] A. Millet and W. Smole/nski, On the continuity of Ornstein-Uhlenbeck processes in infinite dimensions, Probab. Theory Related Fields 92 (1992), 531-547.
- [Ne1] J. M. A. M. van Neerven, Non-symmetric Ornstein-Uhlenbeck semigroups in Banach spaces, J. Funct. Anal. 155 (1998), 495-535. Zbl0928.47031
- [Ne2] J. M. A. M. van Neerven, Sandwiching -semigroups, J. London Math. Soc. 60 (1999), 581-588.
- [Nh] A. L. Neidhardt, Stochastic integrals in -uniformly smooth Banach spaces, Ph.D. thesis, Univ. of Wisconsin, 1978.
- [Nv] J. Neveu, Processus Aléatoires Gaussiens, Les Presses de l'Univ. Montréal, 1968. Zbl0192.54701
- [PZ] S. Peszat and J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), 187-204. Zbl0943.60048
- [Ram] R. Ramer, On nonlinear transformations of Gaussian measures, J. Funct. Anal. 15 (1974), 166-187. Zbl0288.28011
- [Rö1] H. Röckle, Abstract Wiener spaces, infinite-dimensional Gaussian processes and applications, Ph.D. thesis, Ruhr-Universität Bochum, 1993.
- [Rö2] H. Röckle, Banach space valued Ornstein-Uhlenbeck processes with general drift coefficients, Acta Appl. Math. 47 (1997), 323-349. Zbl0884.60005
- [Schw1] L. Schwartz, Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés, J. Anal. Math. 13 (1964), 115-256. Zbl0124.06504
- [Schw2] L. Schwartz, Radon Measures on Arbitrary Topological Vector Spaces, Oxford Univ. Press, Oxford, 1973.
- [VTC] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, D. Reidel, Dordrecht, 1987.
- [Wa] J. B. Walsh, An introduction to stochastic partial differential equations, in: P. L. Hennequin (ed.), École d'Été de Probabilités de Saint-Flour, Lecture Notes in Math. 1180, Springer, 1986, 265-439.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.