The Heisenberg group and the group Fourier transform of regular homogeneous distributions
Studia Mathematica (2000)
- Volume: 143, Issue: 3, page 251-266
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topSlome, Susan. "The Heisenberg group and the group Fourier transform of regular homogeneous distributions." Studia Mathematica 143.3 (2000): 251-266. <http://eudml.org/doc/216818>.
@article{Slome2000,
abstract = {},
author = {Slome, Susan},
journal = {Studia Mathematica},
keywords = {group Fourier transform; regular homogeneous distributions; Heisenberg group; smooth kernel; Weyl correspondent},
language = {eng},
number = {3},
pages = {251-266},
title = {The Heisenberg group and the group Fourier transform of regular homogeneous distributions},
url = {http://eudml.org/doc/216818},
volume = {143},
year = {2000},
}
TY - JOUR
AU - Slome, Susan
TI - The Heisenberg group and the group Fourier transform of regular homogeneous distributions
JO - Studia Mathematica
PY - 2000
VL - 143
IS - 3
SP - 251
EP - 266
AB -
LA - eng
KW - group Fourier transform; regular homogeneous distributions; Heisenberg group; smooth kernel; Weyl correspondent
UR - http://eudml.org/doc/216818
ER -
References
top- [1] H. Bateman, Higher Transcendental Functions, McGraw-Hill, 1953.
- [2] D. Geller, Some results in theory for the Heisenberg group, Duke Math. J. 47 (1980), 365-390. Zbl0474.43012
- [3] D. Geller, Fourier analysis on the Heisenberg group I: Schwartz space, J. Funct. Anal. 36 (1980), 205-254. Zbl0433.43008
- [4] D. Geller, Local solvability and homogeneous distributions on the Heisenberg group, Comm. Partial Differential Equations 5 (1980), 475-560. Zbl0488.22020
- [5] D. Geller, Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group, Canad. J. Math. 36 (1984), 615-684. Zbl0596.46034
- [6] D. Geller, Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solvability, Math. Notes 37, Princeton Univ. Press, 1990. Zbl0695.47051
- [7] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, 1980. Zbl0459.46001
- [8] E. Stein, Harmonic Analysis, Princeton Math. Ser. 43, Monogr. Harmonic Anal. III, Princeton Univ. Press, 1993.
- [9] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser. 32, Princeton Univ. Press, 1971. Zbl0232.42007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.