The Heisenberg group and the group Fourier transform of regular homogeneous distributions

Susan Slome

Studia Mathematica (2000)

  • Volume: 143, Issue: 3, page 251-266
  • ISSN: 0039-3223

How to cite

top

Slome, Susan. "The Heisenberg group and the group Fourier transform of regular homogeneous distributions." Studia Mathematica 143.3 (2000): 251-266. <http://eudml.org/doc/216818>.

@article{Slome2000,
abstract = {},
author = {Slome, Susan},
journal = {Studia Mathematica},
keywords = {group Fourier transform; regular homogeneous distributions; Heisenberg group; smooth kernel; Weyl correspondent},
language = {eng},
number = {3},
pages = {251-266},
title = {The Heisenberg group and the group Fourier transform of regular homogeneous distributions},
url = {http://eudml.org/doc/216818},
volume = {143},
year = {2000},
}

TY - JOUR
AU - Slome, Susan
TI - The Heisenberg group and the group Fourier transform of regular homogeneous distributions
JO - Studia Mathematica
PY - 2000
VL - 143
IS - 3
SP - 251
EP - 266
AB -
LA - eng
KW - group Fourier transform; regular homogeneous distributions; Heisenberg group; smooth kernel; Weyl correspondent
UR - http://eudml.org/doc/216818
ER -

References

top
  1. [1] H. Bateman, Higher Transcendental Functions, McGraw-Hill, 1953. 
  2. [2] D. Geller, Some results in H p theory for the Heisenberg group, Duke Math. J. 47 (1980), 365-390. Zbl0474.43012
  3. [3] D. Geller, Fourier analysis on the Heisenberg group I: Schwartz space, J. Funct. Anal. 36 (1980), 205-254. Zbl0433.43008
  4. [4] D. Geller, Local solvability and homogeneous distributions on the Heisenberg group, Comm. Partial Differential Equations 5 (1980), 475-560. Zbl0488.22020
  5. [5] D. Geller, Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group, Canad. J. Math. 36 (1984), 615-684. Zbl0596.46034
  6. [6] D. Geller, Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solvability, Math. Notes 37, Princeton Univ. Press, 1990. Zbl0695.47051
  7. [7] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, 1980. Zbl0459.46001
  8. [8] E. Stein, Harmonic Analysis, Princeton Math. Ser. 43, Monogr. Harmonic Anal. III, Princeton Univ. Press, 1993. 
  9. [9] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser. 32, Princeton Univ. Press, 1971. Zbl0232.42007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.