An approximation problem in , 2 < p < ∞
Studia Mathematica (1981)
- Volume: 70, Issue: 3, page 221-224
- ISSN: 0039-3223
Access Full Article
topHow to cite
topOberlin, Daniel. "An approximation problem in $L^{p} ([0,2π])$, 2 < p < ∞." Studia Mathematica 70.3 (1981): 221-224. <http://eudml.org/doc/218380>.
@article{Oberlin1981,
author = {Oberlin, Daniel},
journal = {Studia Mathematica},
keywords = {Fourier coefficient; trigonometric polynomials},
language = {eng},
number = {3},
pages = {221-224},
title = {An approximation problem in $L^\{p\} ([0,2π])$, 2 < p < ∞},
url = {http://eudml.org/doc/218380},
volume = {70},
year = {1981},
}
TY - JOUR
AU - Oberlin, Daniel
TI - An approximation problem in $L^{p} ([0,2π])$, 2 < p < ∞
JO - Studia Mathematica
PY - 1981
VL - 70
IS - 3
SP - 221
EP - 224
LA - eng
KW - Fourier coefficient; trigonometric polynomials
UR - http://eudml.org/doc/218380
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.