Numerical integration of differential equations in the presence of first integrals: observer method

Eric Busvelle; Rachid Kharab; A. Maciejewski; Jean-Marie Strelcyn

Applicationes Mathematicae (1994)

  • Volume: 22, Issue: 3, page 373-418
  • ISSN: 1233-7234

Abstract

top
We introduce a simple and powerful procedure-the observer method-in order to obtain a reliable method of numerical integration over an arbitrary long interval of time for systems of ordinary differential equations having first integrals. This aim is achieved by a modification of the original system such that the level manifold of the first integrals becomes a local attractor. We provide a theoretical justification of this procedure. We report many tests and examples dealing with a large spectrum of systems with different dynamical behaviour. The comparison with standard and symplectic methods of integration is also provided.

How to cite

top

Busvelle, Eric, et al. "Numerical integration of differential equations in the presence of first integrals: observer method." Applicationes Mathematicae 22.3 (1994): 373-418. <http://eudml.org/doc/219103>.

@article{Busvelle1994,
abstract = {We introduce a simple and powerful procedure-the observer method-in order to obtain a reliable method of numerical integration over an arbitrary long interval of time for systems of ordinary differential equations having first integrals. This aim is achieved by a modification of the original system such that the level manifold of the first integrals becomes a local attractor. We provide a theoretical justification of this procedure. We report many tests and examples dealing with a large spectrum of systems with different dynamical behaviour. The comparison with standard and symplectic methods of integration is also provided.},
author = {Busvelle, Eric, Kharab, Rachid, Maciejewski, A., Strelcyn, Jean-Marie},
journal = {Applicationes Mathematicae},
keywords = {integrable systems; numerical integration; chaotic behaviour; non-integrable systems; ordinary differential equations; Hamiltonian systems; numerical solution; first integrals; observer method; local attractor; Kepler problem; Gavrilov-Shil'nikov; Anosov flow; symplectic integrators},
language = {eng},
number = {3},
pages = {373-418},
title = {Numerical integration of differential equations in the presence of first integrals: observer method},
url = {http://eudml.org/doc/219103},
volume = {22},
year = {1994},
}

TY - JOUR
AU - Busvelle, Eric
AU - Kharab, Rachid
AU - Maciejewski, A.
AU - Strelcyn, Jean-Marie
TI - Numerical integration of differential equations in the presence of first integrals: observer method
JO - Applicationes Mathematicae
PY - 1994
VL - 22
IS - 3
SP - 373
EP - 418
AB - We introduce a simple and powerful procedure-the observer method-in order to obtain a reliable method of numerical integration over an arbitrary long interval of time for systems of ordinary differential equations having first integrals. This aim is achieved by a modification of the original system such that the level manifold of the first integrals becomes a local attractor. We provide a theoretical justification of this procedure. We report many tests and examples dealing with a large spectrum of systems with different dynamical behaviour. The comparison with standard and symplectic methods of integration is also provided.
LA - eng
KW - integrable systems; numerical integration; chaotic behaviour; non-integrable systems; ordinary differential equations; Hamiltonian systems; numerical solution; first integrals; observer method; local attractor; Kepler problem; Gavrilov-Shil'nikov; Anosov flow; symplectic integrators
UR - http://eudml.org/doc/219103
ER -

References

top
  1. [1] M. Adler and P. van Moerbeke, The algebraic integrability of geodesic flow on SO(4), Invent. Math., 67 (1982) 297-331. Zbl0539.58012
  2. [2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Math. 60, Springer, Berlin (1989). 
  3. [3] V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, V. I. Arnold (ed.) Dynamical Systems III, Encyclopaedia Math. Sci. 3, Springer, Berlin (1988). Zbl0885.70001
  4. [4] M. Artigue, V. Gautheron et E. Isambert, Ensemble de bifurcation et topologie des variétés intégrales dans le problème du solide pesant, J. Méc. Théor. Appl., 5 (1986) 429-469. Zbl0633.70005
  5. [5] M. Audin et R. Shilol, Variétés abéliennes réelles et toupie de Kovalevski, Publ. IRMA (preprint), Strasbourg (1992). 
  6. [6] J. Baumgarte, Stabilization of the differential equations of Keplerian motion, in: B. D. Tapley and V. Szebehely (eds.), Recent Advances in Dynamical Astronomy, Reidel, Dordrecht, (1973) 38-44. Zbl0272.70004
  7. [7] J. Baumgarte, Stabilization, manipulation and analytic step adaptation, in: V. Szebehely and B. D. Tapley (eds.), Long Time Predictions in Dynamics, Reidel, Dordrecht, (1976) 153-163. 
  8. [8] G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli and J.-M. Strelcyn, On the reliability of numerical study of stochasticity. Part I: Existence of time averages, Nuovo Cimento, 44B (1978) 183-195. 
  9. [9] G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli and J.-M. Strelcyn, On the reliability of numerical study of stochasticity. Part II: Identification of time averages, ibid., 50B (1979) 211-232. 
  10. [10] D. G. Bettis (ed.), Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations, 19- 20 October 1972, the University of Texas at Austin, Lecture Notes in Math. 362, Springer, Berlin, 1974. 
  11. [11] O. I. Bogoyavlensky, Integrable Euler equations on Lie algebras arising in problems of mathematical physics, Math. USSR-Izv., 25 (1984) 207-257. 
  12. [12] O. I. Bogoyavlensky, Integrable Euler equations on SO(4) and their physical applications, Comm. Math. Phys., 93 (1984) 417-436. Zbl0567.58012
  13. [13] O. I. Bogoyavlensky, New integrable problems of classical mechanics, ibid., 94 (1984) 225-269. Zbl0576.70004
  14. [14] O. I. Bogoyavlensky, Euler equations on finite dimensional Lie algebras arising in physical problems, ibid., 95 (1984) 307-315. 
  15. [15] O. I. Bogoyavlensky, Periodic solutions in a model of pulsar rotation, ibid., 102 (1985) 349-359. 
  16. [16] O. I. Bogoyavlensky, Integrable cases of a rigid body dynamics and integrable systems on the ellipsoids, ibid., 103 (1986) 305-322. 
  17. [17] O. I. Bogoyavlensky, Some integrable cases of Euler equations I, Dokl. Akad. Nauk SSSR, 287 (1986) 1105-1108 (in Russian). 
  18. [18] O. I. Bogoyavlensky, Some integrable cases of Euler equations II, ibid., 292 (1987) 318-322 (in Russian). 
  19. [19] O. I. Bogoyavlensky, Boundary value problems of mathematical physics, Proc. Steklov Inst. Math., 95 (1988). 
  20. [20] O. I. Bogoyavlensky, Euler equations on finite dimensional Lie coalgebras, Uspekhi Mat. Nauk, 47 (1) (1992) 107-146 (in Russian); English transl.: Russian Math. Surveys 47 (1). 
  21. [21] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comput., 18 (1964) 50-64. Zbl0123.11701
  22. [22] P. J. Channell and J. C. Scovel, Symplectic integrators of Hamiltonian systems, Nonlinearity, 3 (1990) 231-259. Zbl0704.65052
  23. [23] P. J. Channell and J. C. Scovel, Integrators for Lie-Poisson dynamical systems, Phys. D, 50 (1991) 80-88. Zbl0735.58017
  24. [24] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin (1982). 
  25. [25] R. L. Devaney, Homoclinic orbits in Hamiltonian systems, J. Differential Equations, 21 (1976) 431-438. Zbl0343.58005
  26. [26] B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry-Methods and Applications. Part I: The Geometry of Surfaces. Transformation Groups and Fields, Graduate Texts in Math. 93, Springer, Berlin (1984). Zbl0529.53002
  27. [27] B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry - Methods and Applications. Part II: The Geometry and Topology of Manifolds, Graduate Texts in Math. 104, Springer, Berlin (1985). Zbl0565.57001
  28. [28] T. Eirola and J. M. Sanz-Serna, Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods, Numer. Math., 61 (1992) 281-290. Zbl0741.65056
  29. [29] El Hamidi, Propriétés stochastiques d'un système non-linéaire en dimension finie, Thèse de physique théorique, Université de Pau (1989). 
  30. [30] K. Feng and M.-Z. Qin, The symplectic methods for the computation of hamiltonian equations, in: Y.-W. Zhu and B.-Y. Guo (eds.), Numerical Methods for Partial Differential Equations, Lecture Notes in Math. 1297, Springer, Berlin, (1987), 1-37. 
  31. [31] A. F. Filippov, Differential Equations with Discontinuous Right Hand Side, Nauka, Moscow (1985) (in Russian). Zbl0571.34001
  32. [32] A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics, Kluwer, Dordrecht (1988). 
  33. [33] A. T. Fomenko and V. V. Trofimov, Integrable Systems on Lie Algebras and Symmetric Spaces, Gordon and Breach, New York (1988). 
  34. [34] N. K. Gavrilov and L. P. Shil'nikov, On bifurcations of the equilibrium states of a hamiltonian system with two degrees of freedom, Selecta Math. Sov., 10 (1) (1991) 61-68. 
  35. [35] Z. G. Ge and J. E. Marsden, Lie-Poisson-Hamilton-Jacobi theory and Lie- Poisson integrators, Phys. Lett. A, 133 (3) (1988) 134-139. 
  36. [36] C. W. Gear, Invariants and numerical methods for ODEs, Phys. D, 60 (1992) 303-310. Zbl0779.34012
  37. [37] B. Gladman and M. Dunca, Symplectic integrators for long-term integrations in celestial mechanics, Celestial Mech., 52 (1991) 221-240. Zbl0744.70016
  38. [38] D. Greenspan, Arithmetic Applied Mathematics, Pergamon Press, Oxford (1980). 
  39. [39] J. W. Grizzle and P. E. Moraal, Newton, observers and nonlinear discrete-time control, in: Proc. 29th Conf. on Decision and Control, Honolulu, Hawaii, 1990, 760-767. 
  40. [40] L. Haine, Geodesic flow on SO(4) and abelian surfaces, Math. Ann., 263 (1983) 435-472. Zbl0521.58042
  41. [41] L. Haine, The algebraic complete integrability of geodesic flow on SO(N), Comm. Math. Phys., 94 (1984) 271-287. Zbl0584.58023
  42. [42] E. Hairer, S. P. Norsett and G. Wanner, Solving Ordinary Differential Equa- tions I. Nonstiff Problems, Springer, Berlin (1987). Zbl0638.65058
  43. [43] P. Hartman, Ordinary Differential Equations, Wiley, New York (1964). 
  44. [44] K. Hockett, Chaotic numerics from an integrable hamiltonian system, Proc. Amer. Math. Soc., 108 (1990) 271-281. Zbl0678.58021
  45. [45] V. D. Irtegov, Invariant Manifolds of Stationary Motions and Their Stability, Nauka, Siberian branch, Novosibirsk (1985 (in Russian). Zbl0602.70023
  46. [46] H. Kinoshita, H. Yoshida and H. Nakai, Symplectic integrators and their application to dynamical astronomy, Celestial Mech., 50 (1991) 59-71. Zbl0724.70019
  47. [47] A. M. Kovalev and A. N. Chudnenko, On stability of the equilibrium point of a Hamiltonian system with two degrees of freedom in the case of equal frequencies, Dokl. Akad. Nauk Ukrain. SSSR Ser. A, 11 (1977) 1010-1013 (in Russian). Zbl0376.70020
  48. [48] V. V. Kozlov, Integrability and nonintegrability in hamiltonian mechanics, Uspekhi Mat. Nauk, 38 (1) (1983) 3-67 (in Russian). 
  49. [49] V. V. Kozlov and D. A. Onishenko, Nonintegrability of Kirchhoff equations, Dokl. Akad. Nauk SSSR, 266 (1982) 271-281 (in Russian). 
  50. [50] J. D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley, New York (1973). Zbl0258.65069
  51. [51] M. Lecar, A comparison of eleven numerical integrations of the same gravitational 25-body problem, Bull. Astronom., Sér. 3 vol. III fasc. 1 (1968) 91-104. 
  52. [52] E. Leimanis, The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer, Berlin (1965). Zbl0128.41606
  53. [53] L. M. Lerman and Ya. L. Umanskiĭ, On the existence of separatrix loops in four-dimensional systems similar to the integrable hamiltonian systems, J. Appl. Math. Mech., 47 (3) (1983) 335-340. 
  54. [54] T. Levi-Civita and G. Amaldi, Lezioni di meccanica razionale, Vol. II, Part 2, Zanichelli, Bologna (1927). Zbl49.0570.01
  55. [55] A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, Appl. Math. Sci. 38, Springer, Berlin (1983). Zbl0506.70016
  56. [56] A. J. Maciejewski and J.-M. Strelcyn, Numerical integration of differential equations in presence of first integrals: partial first integrals, to appear. Zbl0819.34008
  57. [57] A. Marciniak, Numerical Solutions of the n-Body Problem, Reidel, Dordrecht (1985). 
  58. [58] A. Marciniak, The Selected Numerical Methods for Solving the n-Body Problem, Poznań Technical University, (1989). 
  59. [59] A. Marciniak and D. Greenspan, Energy conserving numerical solutions of simplified turbulence equations, Dept. Math., the University of Texas at Arlington, Technical Report 269 (1990). 
  60. [60] A. Marciniak and D. Greenspan, Arbitrary order Hamiltonian conserving numerical solutions of Calogero and Toda systems, Computers Math. Appl., 22 (7) (1991) 11-35. Zbl0734.65059
  61. [61] P. E. Nacozy, The use of integrals in numerical integrations of the n-body problem, Astrophys. and Space Sci., 14 (1971) 40-51. 
  62. [62] O. Neron de Surgy, Sur les intégrateurs symplectiques pour les systèmes Hamiltoniens standards et les systèmes de Lie-Poisson; une application aux équations d'Euler sur SO(4) Rapport de stage fait à Electricité de France, 1991. 
  63. [63] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Math. 107, Springer, Berlin (1986). 
  64. [64] S. A. Orszag and J. B. McLaughlin, Evidence that random behavior is generic for nonlinear differential equations, Phys. D 1, (1980)) 68-79. Zbl1194.37060
  65. [65] A. M. Perelomov, Dynamical systems of classical mechanics with hidden symmetry, Preprints Inst. Theor. Exper. Phys. Moscow 82, 1981 (in Russian).. 
  66. [66] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras. The simplest systems, Preprints Inst. Theor. Exper. Phys. Moscow 149, 1981 (in Russian).. 
  67. [67] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras. Constrained systems, Preprints Inst. Theor. Exper. Phys. Moscow 116, 1983 (in Russian).. 
  68. [68] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras. The motion of a rigid body with fixed point, Preprints Inst. Theor. Exper. Phys. Moscow 147, 1983 (in Russian).. 
  69. [69] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras. The motion of a rigid body in the ideal fluid, Preprints Inst. Theor. Exper. Phys. Moscow 151, 1984 (in Russian).. 
  70. [70] A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. I, Birkhäuser, Basel (1990). Zbl0717.70003
  71. [71] H. Pollard, Celestial Mechanics, Carus Math. Monogr. 18, Math. Assoc. Amer. (1976). 
  72. [72] J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview, Acta Numerica 1992, 243-286. Zbl0762.65043
  73. [73] Ya. G. Sinai et al., Ergodic theory with applications to dynamical systems and statistical mechanics, in: Ya. G. Sinai (ed.), Dynamical Systems II, Encyclopaedia Math. Sci. 2, Springer, Berlin (1989). 
  74. [74] S. Smale, Topology and mechanics. I, Invent. Math., 10 (1970) 305-331. Zbl0202.23201
  75. [75] S. Smale, Topology and mechanics. II, ibid., 11 (1970) 45-64. Zbl0203.26102
  76. [76] A. G. Sokol'skiĭ, On the stability of an autonomous hamiltonian system with two degres of freedom in the case of equal frequencies, J. Appl. Math. Mech., 38 (1974) 741-749. 
  77. [77] E. Stiefel and G. Schiefele, Linear and Regular Celestial Mechanics, Springer, Berlin (1971). Zbl0226.70005
  78. [78] J.-M. Strelcyn, The 'coexistence problem' for conservative dynamical systems: a review, Colloq. Math., 62 (1991) 331-345. Zbl0791.58062
  79. [79] V. V. Strygin and V. A. Sobolev, Separation of Motions by the Method of Integral Manifolds, Nauka, Moscow (1988 (in Russian). Zbl0657.70002
  80. [80] V. V. Trofimov, Introduction to the Geometry of Manifolds with Symmetries, Moscow University Press, Moscow (1989). Zbl0705.53002
  81. [81] S. Ushiki, Central difference schema and chaos, Phys., D 4 (1982) 407-424. Zbl1194.65097
  82. [82] A. P. Veselov, On conditions of integrability of Euler equations on SO(4) Dokl. Akad. Nauk SSSR, 270 (1983) 1298-1300 (in Russian). 
  83. [83] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990) 262-268. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.