Spectral density estimation for stationary stable random fields
Applicationes Mathematicae (1995)
- Volume: 23, Issue: 2, page 107-133
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topSabre, Rachid. "Spectral density estimation for stationary stable random fields." Applicationes Mathematicae 23.2 (1995): 107-133. <http://eudml.org/doc/219120>.
@article{Sabre1995,
abstract = {We consider a stationary symmetric stable bidimensional process with discrete time, having the spectral representation (1.1). We consider a general case where the spectral measure is assumed to be the sum of an absolutely continuous measure, a discrete measure of finite order and a finite number of absolutely continuous measures on several lines. We estimate the density of the absolutely continuous measure and the density on the lines.},
author = {Sabre, Rachid},
journal = {Applicationes Mathematicae},
keywords = {(S.α.S) process; double kernel method; periodogram; Jackson kernel; stationary symmetric stable bidimensional process; discrete time},
language = {eng},
number = {2},
pages = {107-133},
title = {Spectral density estimation for stationary stable random fields},
url = {http://eudml.org/doc/219120},
volume = {23},
year = {1995},
}
TY - JOUR
AU - Sabre, Rachid
TI - Spectral density estimation for stationary stable random fields
JO - Applicationes Mathematicae
PY - 1995
VL - 23
IS - 2
SP - 107
EP - 133
AB - We consider a stationary symmetric stable bidimensional process with discrete time, having the spectral representation (1.1). We consider a general case where the spectral measure is assumed to be the sum of an absolutely continuous measure, a discrete measure of finite order and a finite number of absolutely continuous measures on several lines. We estimate the density of the absolutely continuous measure and the density on the lines.
LA - eng
KW - (S.α.S) process; double kernel method; periodogram; Jackson kernel; stationary symmetric stable bidimensional process; discrete time
UR - http://eudml.org/doc/219120
ER -
References
top- [1] B. S. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82 (1989), 451-487. Zbl0659.60078
- [2] M. Bertrand-Retali, Processus symétriques α-stables, Séminaire de Probabilité et Statistique à l'Université de Constantine, Algérie, 1987.
- [3] S. Cambanis, Complex symmetric stable variables and processes, in: P. K. Sen (ed.), Contributions to Statistics: Essays in Honour of Norman L. Johnson, North-Holland, New York, 1982, 63-79.
- [4] S. Cambanis and G. Miller, Some path properties of pth order and symmetric stable processes, Ann. Probab. 8 (1980), 1148-1156. Zbl0452.60048
- [5] S. Cambanis and G. Miller, Linear problems in pth order and stable processes, SIAM J. Appl. Math. 41 (1981), 43-69. Zbl0466.60044
- [6] N. Demesh, Application of the polynomial kernels to the estimation of the spectra of discrete stable stationary processes, Akad. Nauk Ukrain. SSR, Inst. Mat. Preprint 64 (1988), 12-36 (in Russian).
- [7] V. K. Dzyadyk, Introduction à la théorie de l'approximation uniforme par fonctions polynomiales, Nauka, 1977 (in Russian).
- [8] C. D. Hardin, On the spectral representation theorem for symmetric stable processes, J. Multivariate Anal. 12 (1982), 385-401. Zbl0493.60046
- [9] L. Heinrich, On the convergence of U-statistics with stable limit distribution, J. Multivariate Anal. 44 (1993), 266-278. Zbl0768.60023
- [10] Y. Hosoya, Discrete-time stable processes and their certain properties, Ann. Probab. 6 (1978), 94-105. Zbl0374.60045
- [11] E. Masry and S. Cambanis, Spectral density estimation for stationary stable processes, Stochastic Process. Appl. 18 (1984), 1-31. Zbl0541.62076
- [12] M. B. Priestley, Spectral Analysis and Time Series, Probab. Math. Statist., Academic Press, 1981. Zbl0537.62075
- [13] R. Sabre, Estimation non paramétrique dans les processus symétriques stables, Thèse de doctorat en Mathématiques, Université de Rouen, 1993.
- [14] M. Schilder, Some structure theorems for the symmetric stable laws, Ann. Math. Statist. 42 (1970), 412-421. Zbl0196.19401
- [15] R. Song, Probabilistic approach to the Dirichlet problem of perturbed stable processes, Probab. Theory Related Fields 95 (1993), 371-389. Zbl0792.60067
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.