# Acceleration properties of the hybrid procedure for solving linear systems

Anna Abkowicz; Claude Brezinski

Applicationes Mathematicae (1996)

- Volume: 23, Issue: 4, page 417-432
- ISSN: 1233-7234

## Access Full Article

top## Abstract

top## How to cite

topAbkowicz, Anna, and Brezinski, Claude. "Acceleration properties of the hybrid procedure for solving linear systems." Applicationes Mathematicae 23.4 (1996): 417-432. <http://eudml.org/doc/219143>.

@article{Abkowicz1996,

abstract = {The aim of this paper is to discuss the acceleration properties of the hybrid procedure for solving a system of linear equations. These properties are studied in a general case and in two particular cases which are illustrated by numerical examples.},

author = {Abkowicz, Anna, Brezinski, Claude},

journal = {Applicationes Mathematicae},

keywords = {linear equations; acceleration; iterative methods; convergence acceleration; convergence; iterative method; linear system; hybrid procedure; numerical examples},

language = {eng},

number = {4},

pages = {417-432},

title = {Acceleration properties of the hybrid procedure for solving linear systems},

url = {http://eudml.org/doc/219143},

volume = {23},

year = {1996},

}

TY - JOUR

AU - Abkowicz, Anna

AU - Brezinski, Claude

TI - Acceleration properties of the hybrid procedure for solving linear systems

JO - Applicationes Mathematicae

PY - 1996

VL - 23

IS - 4

SP - 417

EP - 432

AB - The aim of this paper is to discuss the acceleration properties of the hybrid procedure for solving a system of linear equations. These properties are studied in a general case and in two particular cases which are illustrated by numerical examples.

LA - eng

KW - linear equations; acceleration; iterative methods; convergence acceleration; convergence; iterative method; linear system; hybrid procedure; numerical examples

UR - http://eudml.org/doc/219143

ER -

## References

top- [1] C. Brezinski and M. Redivo Zaglia, Hybrid procedures for solving linear systems, Numer. Math. 67 (1994), 1-19. Zbl0797.65023
- [2] R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Statist. Comput. 14 (1993), 470-482. Zbl0781.65022
- [3] N. Gastinel, Procédé itératif pour la résolution numérique d'un système d'équations linéaires, C. R. Acad. Sci. Paris 246 (1958), 2571-2574. Zbl0081.34004
- [4] K. Jbilou, Projection-minimization methods for nonsymmetric linear systems, Linear Algebra Appl. 229 (1995), 101-125. Zbl0837.65032
- [5] K. Jbilou, G-orthogonal projection methods for solving linear systems, to appear.
- [6] W. Schönauer, Scientific Computing on Vector Computers, North-Holland, Amsterdam, 1987.
- [7] W. Schönauer, H. Müller and E. Schnepf, Numerical tests with biconjugate gradient type methods, Z. Angew. Math. Mech. 65 (1985), T400-T402.
- [8] R. Weiss, Convergence behavior of generalized conjugate gradient methods, Ph.D. Thesis, University of Karlsruhe, 1990. Zbl0738.90074
- [9] R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Statist. Comput. 15 (1994), 511-527. Zbl0798.65048
- [10] R. Weiss, Properties of generalized conjugate gradient methods, Numer. Linear Algebra Appl. 1 (1994), 45-63. Zbl0816.65013
- [11] R. Weiss and W. Schönauer, Accelerating generalized conjugate gradient methods by smoothing, in: Iterative Methods in Linear Algebra, R. Beauwens and P. de Groen (eds.), North-Holland, Amsterdam, 1992, 283-292. Zbl0785.65045
- [12] L. Zhou and H. F. Walker, Residual smoothing techniques for iterative methods, SIAM J. Sci. Statist. Comput. 15 (1994), 297-312. Zbl0802.65041

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.