Recursive self-tuning control of finite Markov chains
Applicationes Mathematicae (1997)
- Volume: 24, Issue: 2, page 169-188
 - ISSN: 1233-7234
 
Access Full Article
topAbstract
topHow to cite
topBorkar, Vivek. "Recursive self-tuning control of finite Markov chains." Applicationes Mathematicae 24.2 (1997): 169-188. <http://eudml.org/doc/219160>.
@article{Borkar1997,
	abstract = {A recursive self-tuning control scheme for finite Markov chains is proposed wherein the unknown parameter is estimated by a stochastic approximation scheme for maximizing the log-likelihood function and the control is obtained via a relative value iteration algorithm. The analysis uses the asymptotic o.d.e.s associated with these.},
	author = {Borkar, Vivek},
	journal = {Applicationes Mathematicae},
	keywords = {controlled Markov chains; stochastic approximation; relative value iteration; self-tuning control; adaptive control; recursive self-tuning control scheme; finite Markov chains; stochastic approximation scheme},
	language = {eng},
	number = {2},
	pages = {169-188},
	title = {Recursive self-tuning control of finite Markov chains},
	url = {http://eudml.org/doc/219160},
	volume = {24},
	year = {1997},
}
TY  - JOUR
AU  - Borkar, Vivek
TI  - Recursive self-tuning control of finite Markov chains
JO  - Applicationes Mathematicae
PY  - 1997
VL  - 24
IS  - 2
SP  - 169
EP  - 188
AB  - A recursive self-tuning control scheme for finite Markov chains is proposed wherein the unknown parameter is estimated by a stochastic approximation scheme for maximizing the log-likelihood function and the control is obtained via a relative value iteration algorithm. The analysis uses the asymptotic o.d.e.s associated with these.
LA  - eng
KW  - controlled Markov chains; stochastic approximation; relative value iteration; self-tuning control; adaptive control; recursive self-tuning control scheme; finite Markov chains; stochastic approximation scheme
UR  - http://eudml.org/doc/219160
ER  - 
References
top- [1] D. Bertsekas, Dynamic Programming--Deterministic and Stochastic Models, Prentice-Hall, Englewood Cliffs, N.J., 1987. Zbl0649.93001
 - [2] V. S. Borkar, Identification and adaptive control of Markov chains, Ph.D. Thesis, Dept. of Electrical Engrg. and Computer Science, Univ. of California, Berkeley, 1980. Zbl0491.93063
 - [3] V. S. Borkar, Topics in Controlled Markov Chains, Pitman Res. Notes in Math. 240, Longman Scientific and Technical, Harlow, 1991. Zbl0725.93082
 - [4] V. S. Borkar, The Kumar-Becker-Lin scheme revisited, J. Optim. Theory Appl. 66 (1990), 289-309. Zbl0682.93060
 - [5] V. S. Borkar, On Milito-Cruz adaptive control scheme for Markov chains, ibid. 77 (1993), 385-393. Zbl0791.93055
 - [6] V. S. Borkar and K. Soumyanath, A new analog parallel scheme for fixed point computation I--theory, submitted. Zbl0953.65038
 - [7] V. S. Borkar and P. P. Varaiya, Adaptive control of Markov chains I: finite parameter case, IEEE Trans. Automat. Control AC-24 (1979), 953-957. Zbl0416.93065
 - [8] V. S. Borkar and P. P. Varaiya, Identification and adaptive control of Markov chains, SIAM J. Control Optim. 20 (1982), 470-488. Zbl0491.93063
 - [9] Y.-S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, Springer, New York, 1979.
 - [10] B. Doshi and S. Shreve, Randomized self-tuning control of Markov chains, J. Appl. Probab. 17 (1980), 726-734. Zbl0442.93054
 - [11] Y. El Fattah, Recursive algorithms for adaptive control of finite Markov chains, IEEE Trans. Systems Man Cybernet. SMC-11 (1981), 135-144.
 - [12] --, Gradient approach for recursive estimation and control in finite Markov chains, Adv. Appl. Probab. 13 (1981), 778-803. Zbl0475.60051
 - [13] M. Hirsch, Convergent activation dynamics in continuous time networks, Neural Networks 2 (1987), 331-349.
 - [14] A. Jalali and M. Ferguson, Adaptive control of Markov chains with local updates, Systems Control Lett. 14 (1990), 209-218. Zbl0699.93047
 - [15] P. R. Kumar and A. Becker, A new family of adaptive optimal controllers for Markov chains, IEEE Trans. Automat. Control AC-27 (1982), 137-142. Zbl0471.93069
 - [16] P. R. Kumar and W. Lin, Optimal adaptive controllers for Markov chains, ibid., 756-774. Zbl0488.93036
 - [17] H. Kushner and D. Clark, Stochastic Approximation for Constrained and Unconstrained Systems, Springer, Berlin, 1978. Zbl0381.60004
 - [18] P. Mandl, Estimation and control in Markov chains, Adv. Appl. Probab. 6 (1974), 40-60. Zbl0281.60070
 - [19] R. Milito and J. B. Cruz Jr., An optimization oriented approach to adaptive control of Markov chains, IEEE Trans. Automat. Control AC-32 (1987), 754-762. Zbl0632.93080
 - [20] J. Neveu, Discrete-Parameter Martingales, North-Holland, Amsterdam, 1975.
 - [21] B. Sagalovsky, Adaptive control and parameter estimation in Markov chains: a linear case, IEEE Trans. Automat. Control AC-27 (1982), 414-417. Zbl0479.93061
 - [22] Ł. Stettner, On nearly self-optimizing strategies for a discrete-time uniformly ergodic adaptive model, Appl. Math. Optim. 27 (1993), 161-177. Zbl0769.93084
 - [23] T. Yoshizawa, Stability Theory by Liapunov's Second Method, The Mathematical Society of Japan, 1966.
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.