Global existence for a one-dimensional model in gas dynamics

Serge Njamkepo

Applicationes Mathematicae (1997)

  • Volume: 24, Issue: 2, page 203-221
  • ISSN: 1233-7234

Abstract

top
We prove the existence of a global solution for a one-dimensio- nal Navier-Stokes system for a gas with internal capillarity.

How to cite

top

Njamkepo, Serge. "Global existence for a one-dimensional model in gas dynamics." Applicationes Mathematicae 24.2 (1997): 203-221. <http://eudml.org/doc/219163>.

@article{Njamkepo1997,
abstract = {We prove the existence of a global solution for a one-dimensio- nal Navier-Stokes system for a gas with internal capillarity.},
author = {Njamkepo, Serge},
journal = {Applicationes Mathematicae},
keywords = {capillarity; Navier-Stokes equations; gas dynamics; adiabatic flow of viscous gas; iterative procedure; local existence; second gradient theory; internal capillarity; fourth-order viscosity coefficient; uniform Gronwall lemma},
language = {eng},
number = {2},
pages = {203-221},
title = {Global existence for a one-dimensional model in gas dynamics},
url = {http://eudml.org/doc/219163},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Njamkepo, Serge
TI - Global existence for a one-dimensional model in gas dynamics
JO - Applicationes Mathematicae
PY - 1997
VL - 24
IS - 2
SP - 203
EP - 221
AB - We prove the existence of a global solution for a one-dimensio- nal Navier-Stokes system for a gas with internal capillarity.
LA - eng
KW - capillarity; Navier-Stokes equations; gas dynamics; adiabatic flow of viscous gas; iterative procedure; local existence; second gradient theory; internal capillarity; fourth-order viscosity coefficient; uniform Gronwall lemma
UR - http://eudml.org/doc/219163
ER -

References

top
  1. [A] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. 
  2. [B] H. Brezis, Analyse Fonctionnelle, Masson, 1982. 
  3. [E-M-N] A. Eden, A. Milani and B. Nicolaenko, Local exponential attractors for models of phase change for compressible gas dynamics, Nonlinearity 6 (1993), 93-117. Zbl0765.76073
  4. [Ga-S] R. Gatignol and P. Seppecher, Modelisation of fluid-fluid interfaces with material properties, J. Méc. Théor. Appl. 1986, 225-247. Zbl0613.76116
  5. [G] P. Germain, La méthode des puissances virtuelles en mécanique des milieux continus, J. Mécanique 12 (1973), 235-274. Zbl0261.73003
  6. [G-T] J.-M. Ghidaglia and R. Temam, Long time behavior for partly dissipative equations: the slightly compressible 2D-Navier-Stokes equations, Asymptotic Anal. 1 (1988), 23-49. Zbl0657.76029
  7. [K-S] A. V. Kazhikhov and S. Shelukin, Unique solution with respect to time of initial boundary value problem for one dimensional equations of a viscous gas, J. Appl. Math. Mech. 4 (1982), 273-282. 
  8. [M-N] A. Matsumura and A. Nishida, The initial value problem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ. 20 (1980), 67-104. Zbl0429.76040
  9. [S] P. Seppecher, Etude d'une modélisation des zones capillaires fluides: interfaces et lignes de contact, Thèse de Doctorat, Université Paris VI, 1987. 
  10. [Se1] D. Serre, Sur l'équation monodimensionnelle d'un fluide visqueux compressible et conducteur de chaleur, C. R. Acad. Sci. Paris Sér. I 303 (1986), 703-706. Zbl0611.35070
  11. [Se2] D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible, ibid., 639-642. Zbl0597.76067
  12. [Se3] D. Serre, Entropie du mélange liquide-vapeur d'un fluide thermo-capillaire, Arch. Rationel Mech. Anal. 128 (1994), 33-73. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.