Statistical estimation of higher-order spectral densities by means of general tapering

M'hammed Baba Harra

Applicationes Mathematicae (1997)

  • Volume: 24, Issue: 4, page 357-381
  • ISSN: 1233-7234

Abstract

top
Given a realization on a finite interval of a continuous-time stationary process, we construct estimators for higher order spectral densities. Tapering and shift-in-time methods are used to build estimators which are asymptotically unbiased and consistent for all admissible values of the argument. Asymptotic results for the fourth-order densities are given. Detailed attention is paid to the nth order case.

How to cite

top

Baba Harra, M'hammed. "Statistical estimation of higher-order spectral densities by means of general tapering." Applicationes Mathematicae 24.4 (1997): 357-381. <http://eudml.org/doc/219178>.

@article{BabaHarra1997,
abstract = {Given a realization on a finite interval of a continuous-time stationary process, we construct estimators for higher order spectral densities. Tapering and shift-in-time methods are used to build estimators which are asymptotically unbiased and consistent for all admissible values of the argument. Asymptotic results for the fourth-order densities are given. Detailed attention is paid to the nth order case.},
author = {Baba Harra, M'hammed},
journal = {Applicationes Mathematicae},
keywords = {shift-in-time; higher-order spectral densities; cumulant; admissible values; indecomposable partitions; stochastic processes; product moment; tapering; characteristic number},
language = {eng},
number = {4},
pages = {357-381},
title = {Statistical estimation of higher-order spectral densities by means of general tapering},
url = {http://eudml.org/doc/219178},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Baba Harra, M'hammed
TI - Statistical estimation of higher-order spectral densities by means of general tapering
JO - Applicationes Mathematicae
PY - 1997
VL - 24
IS - 4
SP - 357
EP - 381
AB - Given a realization on a finite interval of a continuous-time stationary process, we construct estimators for higher order spectral densities. Tapering and shift-in-time methods are used to build estimators which are asymptotically unbiased and consistent for all admissible values of the argument. Asymptotic results for the fourth-order densities are given. Detailed attention is paid to the nth order case.
LA - eng
KW - shift-in-time; higher-order spectral densities; cumulant; admissible values; indecomposable partitions; stochastic processes; product moment; tapering; characteristic number
UR - http://eudml.org/doc/219178
ER -

References

top
  1. [1] M. Baba Harra, Estimation de densités spectrales d'ordre quatre avec lissage quelconque, Publication de l'URA 1378 Analyse et Modèles Stochastiques 2 (1995), 1-38. 
  2. [2] M. Baba Harra, Estimation de densités spectrales d'ordre élevé, PhD thesis, Université de Rouen, 1996. 
  3. [3] A. Blanc-Lapierre et R. Fortet, Théorie des Fonctions Aléatoires, Masson, Paris, 1953. Zbl0051.35702
  4. [4] P. Bloomfield, Fourier Analysis of Time Series: An Introduction, Wiley, New York, 1976. Zbl0353.62051
  5. [5] D. R. Brillinger, An introduction to polyspectra, Ann. Math. Statist. 36 (1965), 1351-1374. Zbl0211.49904
  6. [6] D. R. Brillinger, Time Series: Data Analysis and Theory, Holt, Rinehart and Winston, New York, 1975. Zbl0321.62004
  7. [7] D. R. Brillinger, The 1983 Wald memorial lectures: Some statistical methods for random process data from seismology and neurophysiology, Ann. Statist. 16 (1988), 1-54. Zbl0637.62089
  8. [8] D. R. Brillinger and M. Rosenblatt, Asymptotic theory of estimates of k-th order spectra, in: B. Harris (ed.), Advanced Seminar on Spectral Analysis of Time Series, Wiley, New York, 1967, 153-231. 
  9. [9] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297-301. Zbl0127.09002
  10. [10] R. Dahlhaus, Spectral analysis with tapered data, J. Time Ser. Anal. 4 (1983), 163-175. Zbl0552.62068
  11. [11] R. Dahlhaus, Nonparametric spectral analysis with missing observations, Sankhyā 3 (1987), 347-367. Zbl0665.62094
  12. [12] S. Elgar and V. Chandran, Higher order spectral analysis of Chua's circuit, IEEE Trans. Circuit Systems, 40 (1993), 689-692. Zbl0844.58055
  13. [13] U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time Series, Wiley, New York, 1957. Zbl0080.12904
  14. [14] G. A. Isakova, Estimation spectrale d'ordre élevé pour les processus stationnaires avec lissage gaussien, C. R. l'Acad. Sci. République Sov. Biélorussie 3 (1989), 3-9. 
  15. [15] R. H. Jones, Spectral analysis with regularly missed observations, Ann. Math. Statist. 33 (1962), 455-461. Zbl0114.34503
  16. [16] P. T. Kim, Estimation of product moments of a stationary stochastic process with application to estimation of cumulants and cumulant spectral densities, Canad. J. Statist. 17 (1989), 285-299. Zbl0685.62076
  17. [17] L. H. Koopmans, The Spectral Analysis of Time Series, Academic Press, New York, 1974. Zbl0289.62056
  18. [18] Le Fe Do, Strong consistency of an estimate of a moment function of fourth order of a stationary random process, Ukrain. Mat. Zh. 49 (1991), 354-358 (in Russian). Zbl0722.62055
  19. [19] V. P. Leonov and A. N. Shiryaev, On a method of calculation of semi-invariants, Theor. Probab. Appl. 4 (1959), 319-329. Zbl0087.33701
  20. [20] K. S. Lii and M. Rosenblatt, Cumulant spectral estimates: Bias and covariance, in: Limit Theorems in Probability and Statistics (Pécs, 1989), Colloq. Math. Soc. János Bolyai 57, North-Holland, 1990, 365-405. 
  21. [21] K. S. Lii, M. Rosenblatt and C. W. Atta, Bispectral measurements in turbulence, J. Fluid Mech. 77 (1976), 45-62. 
  22. [22] A. Preumont, Vibrations aléatoires et analyse spectrale, Presses Polytechniques et Universitaires Romandes, Lausanne, 1990. 
  23. [23] M. B. Priestley, Spectral Analysis and Time Series, Academic Press, London, 1981. 
  24. [24] M. Rosenblatt and J. Van Ness, Estimation of the bispectrum, Ann. Math. Statist. 36 (1965), 1120-1135. Zbl0135.19804
  25. [25] A. N. Shiryaev, Some problems in the spectral theory of higher-order moments, Theor. Probab. Appl. 5 (1961), 265-284. Zbl0109.36001
  26. [26] T. Subba Rao and M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture Notes in Statist. 24, Springer, New York, 1984. Zbl0543.62074
  27. [27] I. G. Žurbenko [I. G. Zhurbenko], The Spectral Analysis of Time Series, North-Holland, Amsterdam, 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.