Compound Poisson approximation for extremes of moving minima in arrays of independent random variables
Applicationes Mathematicae (1998)
- Volume: 25, Issue: 1, page 19-28
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. D. Barbour, L. H. Y. Chen and W. L. Loh, Compound Poisson approximation for nonnegative random variables via Stein's method, Ann. Probab. 20 (1992), 1843-1866. Zbl0765.60015
- [2] E. R. Canfield and W. P. McCormick, Asymptotic reliability of consecutive k-out-of-n systems, J. Appl. Probab. 29 (1992), 142-155. Zbl0758.60093
- [3] O. Chryssaphinou and S. G. Papastavridis, Limit distribution for a consecutive k-out-of-n: F system, Adv. Appl. Probab. 22 (1990), 491-493. Zbl0713.60093
- [4] J. Dudkiewicz, Asymptotic of extremes of moving minima in arrays of independent random variables, Demonstratio Math. 29 (1996), 715-721. Zbl0879.60054
- [5] S. G. Papastavridis, A limit theorem for the reliability of a consecutive-k-out-of-n system, Adv. Appl. Probab. 19 (1987), 746-748. Zbl0626.60086
- [6] R. J. Serfling, A general Poisson approximation theorem, Ann. Probab. 3 (1975), 726-731. Zbl0321.60018
- [7] A. M. Zubkov, Estimates for sums of finitely dependent indicators and for the time of first occurrence of a rare event, Probabilistic Problems of Discrete Mathematics, Trudy Mat. Inst. Steklov. 177 (1986), 33-46, 207 (in Russian). Zbl0605.60034