Extensions of convex functionals on convex cones
Applicationes Mathematicae (1998)
- Volume: 25, Issue: 3, page 381-386
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topIgnaczak, E., and Paszkiewicz, A.. "Extensions of convex functionals on convex cones." Applicationes Mathematicae 25.3 (1998): 381-386. <http://eudml.org/doc/219211>.
@article{Ignaczak1998,
	abstract = {We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.},
	author = {Ignaczak, E., Paszkiewicz, A.},
	journal = {Applicationes Mathematicae},
	keywords = {Hilbert space; convex functional; convex cone; linear topological space; convex extension},
	language = {eng},
	number = {3},
	pages = {381-386},
	title = {Extensions of convex functionals on convex cones},
	url = {http://eudml.org/doc/219211},
	volume = {25},
	year = {1998},
}
TY  - JOUR
AU  - Ignaczak, E.
AU  - Paszkiewicz, A.
TI  - Extensions of convex functionals on convex cones
JO  - Applicationes Mathematicae
PY  - 1998
VL  - 25
IS  - 3
SP  - 381
EP  - 386
AB  - We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.
LA  - eng
KW  - Hilbert space; convex functional; convex cone; linear topological space; convex extension
UR  - http://eudml.org/doc/219211
ER  - 
References
top- [1] J. M. Harrison and D. M. Kreps, Martingales and arbitrage in multiperiod securities markets, J. Econom. Theory 20 (1979), 381-408. Zbl0431.90019
- [2] R. B. Holmes, Geometric Functional Analysis and its Applications, Springer, Berlin, 1975. Zbl0336.46001
- [3] E. Jouini, Market imperfections, equilibrium and arbitrage, in: Financial Mathematics, Lecture Notes in Math. 1656, Springer, Berlin, 1997, 247-307. Zbl0910.90010
- [4] M. Musiela and M. Rutkowski, Martingale Methods in Financial Modeling, Springer, Berlin, 1997. Zbl0906.60001
- [5] S. Rolewicz, Functional Analysis and Control Theory, PWN-Polish Sci. Publ., Warszawa, 1971.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 