Regularity of the multidimensional scaling functions: estimation of the L p -Sobolev exponent

Jarosław Kotowicz

Applicationes Mathematicae (1999)

  • Volume: 25, Issue: 4, page 431-447
  • ISSN: 1233-7234

Abstract

top
The relationship between the spectral properties of the transfer operator corresponding to a wavelet refinement equation and the L p -Sobolev regularity of solution for the equation is established.

How to cite

top

Kotowicz, Jarosław. "Regularity of the multidimensional scaling functions: estimation of the $L^{p}$-Sobolev exponent." Applicationes Mathematicae 25.4 (1999): 431-447. <http://eudml.org/doc/219217>.

@article{Kotowicz1999,
abstract = {The relationship between the spectral properties of the transfer operator corresponding to a wavelet refinement equation and the $L^p$-Sobolev regularity of solution for the equation is established.},
author = {Kotowicz, Jarosław},
journal = {Applicationes Mathematicae},
keywords = {$L^p$-Sobolev exponent; transfer operator; refinement equation; scaling functions; spectral radius; -Sobolev exponent; wavelet refinement equation},
language = {eng},
number = {4},
pages = {431-447},
title = {Regularity of the multidimensional scaling functions: estimation of the $L^\{p\}$-Sobolev exponent},
url = {http://eudml.org/doc/219217},
volume = {25},
year = {1999},
}

TY - JOUR
AU - Kotowicz, Jarosław
TI - Regularity of the multidimensional scaling functions: estimation of the $L^{p}$-Sobolev exponent
JO - Applicationes Mathematicae
PY - 1999
VL - 25
IS - 4
SP - 431
EP - 447
AB - The relationship between the spectral properties of the transfer operator corresponding to a wavelet refinement equation and the $L^p$-Sobolev regularity of solution for the equation is established.
LA - eng
KW - $L^p$-Sobolev exponent; transfer operator; refinement equation; scaling functions; spectral radius; -Sobolev exponent; wavelet refinement equation
UR - http://eudml.org/doc/219217
ER -

References

top
  1. [1] N. K. Bari, Trigonometric Series, Fizmatgiz, 1961 (in Russian). 
  2. [2] A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions, Rev. Mat. Iberoamericana 12 (1996), 527-591. Zbl0879.65102
  3. [3] A. Cohen and R. D. Ryan, Wavelets and Multiscale Signal Processing, Appl. Math. Math. Comput. 11, Chapman & Hall, 1995. Zbl0848.42021
  4. [4] I. Daubechies and J. Lagarias, Two-scale difference equation I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), 1388-1410. Zbl0763.42018
  5. [5] I. Daubechies and J. Lagarias, Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals, ibid. 23 (1992), 1031-1079. Zbl0788.42013
  6. [6] K. Deimling, Nonlinear Functional Analysis, Springer, 1985. 
  7. [7] T. Eriola, Sobolev characterization of solution of dilation equations, SIAM J. Math. Anal. 23 (1992), 1015-1030. Zbl0761.42014
  8. [8] C. Heil and D. Colella, Sobolev regularity for refinement equations via ergodic theory, in: C. K. Chui and L. L. Schumaker (eds.), Approximation Theory VIII, Vol. 2, World Sci., 1995, 151-158. 
  9. [9] P. N. Heller and R. O. Wells Jr., The spectral theory of multiresolution operators and applications, in: Wavelets: Theory, Algorithms, and Applications, C. K. Chui, L. Montefusco and L. Puccio (eds.), Wavelets 5, Academic Press, 1994, 13-31. Zbl0845.42018
  10. [10] L. Hervé, Construction et régularité des fonctions d'échelle, SIAM J. Math. Anal. 26 (1995), 1361-1385. Zbl0848.42023
  11. [11] J. Kotowicz, On existence of a compactly supported L p solution for two-dimensional two-scale dilation equations, Appl. Math. (Warsaw) 24 (1997), 325-334. Zbl0946.39009
  12. [12] K. S. Lau and J. Wang, Characterization of L p -solutions for the two-scale dilation equations, SIAM J. Math. Anal. 26 (1995), 1018-1048. Zbl0828.42024
  13. [13] C. A. Micchelli and H. Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989), 841-870. Zbl0668.65011
  14. [14] O. Rioul, Simple regularity criteria for subdivision schemes, SIAM J. Math. Anal. 23 (1992), 1544-1576. Zbl0761.42016
  15. [15] N. A. Sadovnichiĭ, Theory of Operators, Moscow Univ. Press, 1979 (in Russian). 
  16. [16] L. Villemoes, Energy moments in time and frequency for 2 -scale dilation equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992), 1519-1543. Zbl0759.39005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.