Bivariate negative binomial distribution of the Marshall-Olkin type
Applicationes Mathematicae (1999)
- Volume: 25, Issue: 4, page 457-461
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topKopocińska, Ilona. "Bivariate negative binomial distribution of the Marshall-Olkin type." Applicationes Mathematicae 25.4 (1999): 457-461. <http://eudml.org/doc/219219>.
@article{Kopocińska1999,
abstract = {The bivariate negative binomial distribution is introduced using the Marshall-Olkin type bivariate geometrical distribution. It is used to the estimation of the distribution of the number of accidents in standard data.},
author = {Kopocińska, Ilona},
journal = {Applicationes Mathematicae},
keywords = {bivariate negative geometrical; negative binomial distribution; bivariate geometrical distribution},
language = {eng},
number = {4},
pages = {457-461},
title = {Bivariate negative binomial distribution of the Marshall-Olkin type},
url = {http://eudml.org/doc/219219},
volume = {25},
year = {1999},
}
TY - JOUR
AU - Kopocińska, Ilona
TI - Bivariate negative binomial distribution of the Marshall-Olkin type
JO - Applicationes Mathematicae
PY - 1999
VL - 25
IS - 4
SP - 457
EP - 461
AB - The bivariate negative binomial distribution is introduced using the Marshall-Olkin type bivariate geometrical distribution. It is used to the estimation of the distribution of the number of accidents in standard data.
LA - eng
KW - bivariate negative geometrical; negative binomial distribution; bivariate geometrical distribution
UR - http://eudml.org/doc/219219
ER -
References
top- [1] G. E. Bates and J. Neyman, Contribution to the theory of accident proneness, I. An optimistic model of the correlation between light and severe accidents, Univ. of California Publ. Statist. 1 (1952), 215-254. Zbl0047.13404
- [2] C. B. Edwards and J. Gurland, A class of distributions applicable to accidents, J. Amer. Statist. Assoc. 56 (1961), 503-517. Zbl0201.52805
- [3] B. Kopociński, Bivariate negative binomial distribution based on a bivariate exponential distribution function, to appear.
- [4] A. W. Marshall and I. Olkin, A multivariate exponential distribution, J. Amer. Statist. Assoc. 62 (1967), 30-44.
- [5] K. Subrahmaniam and K. Subrahmaniam, On the estimation of the parameters in the bivariate negative binomial distribution, J. Roy. Statist. Assoc. 35 (1973), 131-146. Zbl0281.62035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.