Bivariate negative binomial distribution of the Marshall-Olkin type

Ilona Kopocińska

Applicationes Mathematicae (1999)

  • Volume: 25, Issue: 4, page 457-461
  • ISSN: 1233-7234

Abstract

top
The bivariate negative binomial distribution is introduced using the Marshall-Olkin type bivariate geometrical distribution. It is used to the estimation of the distribution of the number of accidents in standard data.

How to cite

top

Kopocińska, Ilona. "Bivariate negative binomial distribution of the Marshall-Olkin type." Applicationes Mathematicae 25.4 (1999): 457-461. <http://eudml.org/doc/219219>.

@article{Kopocińska1999,
abstract = {The bivariate negative binomial distribution is introduced using the Marshall-Olkin type bivariate geometrical distribution. It is used to the estimation of the distribution of the number of accidents in standard data.},
author = {Kopocińska, Ilona},
journal = {Applicationes Mathematicae},
keywords = {bivariate negative geometrical; negative binomial distribution; bivariate geometrical distribution},
language = {eng},
number = {4},
pages = {457-461},
title = {Bivariate negative binomial distribution of the Marshall-Olkin type},
url = {http://eudml.org/doc/219219},
volume = {25},
year = {1999},
}

TY - JOUR
AU - Kopocińska, Ilona
TI - Bivariate negative binomial distribution of the Marshall-Olkin type
JO - Applicationes Mathematicae
PY - 1999
VL - 25
IS - 4
SP - 457
EP - 461
AB - The bivariate negative binomial distribution is introduced using the Marshall-Olkin type bivariate geometrical distribution. It is used to the estimation of the distribution of the number of accidents in standard data.
LA - eng
KW - bivariate negative geometrical; negative binomial distribution; bivariate geometrical distribution
UR - http://eudml.org/doc/219219
ER -

References

top
  1. [1] G. E. Bates and J. Neyman, Contribution to the theory of accident proneness, I. An optimistic model of the correlation between light and severe accidents, Univ. of California Publ. Statist. 1 (1952), 215-254. Zbl0047.13404
  2. [2] C. B. Edwards and J. Gurland, A class of distributions applicable to accidents, J. Amer. Statist. Assoc. 56 (1961), 503-517. Zbl0201.52805
  3. [3] B. Kopociński, Bivariate negative binomial distribution based on a bivariate exponential distribution function, to appear. 
  4. [4] A. W. Marshall and I. Olkin, A multivariate exponential distribution, J. Amer. Statist. Assoc. 62 (1967), 30-44. 
  5. [5] K. Subrahmaniam and K. Subrahmaniam, On the estimation of the parameters in the bivariate negative binomial distribution, J. Roy. Statist. Assoc. 35 (1973), 131-146. Zbl0281.62035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.