Multivariate negative binomial distributions generated by multivariate exponential distributions
Applicationes Mathematicae (1999)
- Volume: 25, Issue: 4, page 463-472
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topKopociński, Bolesław. "Multivariate negative binomial distributions generated by multivariate exponential distributions." Applicationes Mathematicae 25.4 (1999): 463-472. <http://eudml.org/doc/219220>.
@article{Kopociński1999,
abstract = {We define a multivariate negative binomial distribution (MVNB) as a bivariate Poisson distribution function mixed with a multivariate exponential (MVE) distribution. We focus on the class of MVNB distributions generated by Marshall-Olkin MVE distributions. For simplicity of notation we analyze in detail the class of bivariate (BVNB) distributions. In applications the standard data from [2] and [7] and data concerning parasites of birds from [4] are used.},
author = {Kopociński, Bolesław},
journal = {Applicationes Mathematicae},
keywords = {bivariate geometrical distribution; multivariate exponential distribution; multivariate negative binomial distribution},
language = {eng},
number = {4},
pages = {463-472},
title = {Multivariate negative binomial distributions generated by multivariate exponential distributions},
url = {http://eudml.org/doc/219220},
volume = {25},
year = {1999},
}
TY - JOUR
AU - Kopociński, Bolesław
TI - Multivariate negative binomial distributions generated by multivariate exponential distributions
JO - Applicationes Mathematicae
PY - 1999
VL - 25
IS - 4
SP - 463
EP - 472
AB - We define a multivariate negative binomial distribution (MVNB) as a bivariate Poisson distribution function mixed with a multivariate exponential (MVE) distribution. We focus on the class of MVNB distributions generated by Marshall-Olkin MVE distributions. For simplicity of notation we analyze in detail the class of bivariate (BVNB) distributions. In applications the standard data from [2] and [7] and data concerning parasites of birds from [4] are used.
LA - eng
KW - bivariate geometrical distribution; multivariate exponential distribution; multivariate negative binomial distribution
UR - http://eudml.org/doc/219220
ER -
References
top- [1] G. E. Bates and J. Neyman, Contributions to the theory of accident proneness, I. An optimistic model of the correlation between light and severe accidents, Univ. Calif. Publ. Statist. 1 (1952), 215-254. Zbl0047.13404
- [2] C. B. Edwards and J. Gurland, A class of distributions applicable to accidents, J. Amer. Statist. Assoc. 56 (1961), 503-517. Zbl0201.52805
- [3] I. Kopocińska, B. Kopociński and A. Okulewicz, Mixed negative binomial distributions in analysis of the number of parasitic nematodes in blackbird (Turdus merula L.), in: Proceedings of Third National Conference on Applications of Mathematics to Biology and Medicine (Mądralin, 1997), 25-31.
- [4] B. Kopociński, E. Lonc and M. Modrzejewska, Fitting a modified binomial model, to distribution of avian lice Phthiraptea: Mellophaga) parasiting on pheasant Phasianus colchicus L.), Acta Parasitologica 43 (1988), 81-85.
- [5] E. Lonc, A. Okulewicz and I. Kopocińska, Estimation of distribution parameters of some avian parasites, Wiad. Parazytol. 43 (1997), 185-193.
- [6] A. W. Marshall and I. Olkin, A multivariate exponential distribution, J. Amer. Statist. Assoc. 62 (1967), 30-44.
- [7] K. Subrahmaniam and K. Subrahmaniam, On the estimation of the parameters in the bivariate negative binomial distribution, J. Roy. Statist. Soc. 35 (1973), 131-146. Zbl0281.62035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.