Least-squares trigonometric regression estimation
Applicationes Mathematicae (1999)
- Volume: 26, Issue: 2, page 121-131
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Droge, On finite-sample properties of adaptive least-squares regression estimates, Statistics 24 (1993), 181-203. Zbl0808.62035
- [2] R. L. Eubank and P. Speckman, Convergence rates for trigonometric and polynomial-trigonometric regression estimators, Statist. Probab. Lett. 11 (1991), 119-124. Zbl0712.62037
- [3] T. Gasser, L. Sroka and C. Jennen-Steinmetz, Residual variance and residual pattern in nonlinear regression, Biometrika 73 (1986), 625-633. Zbl0649.62035
- [4] P. Hall, J. W. Kay and D. M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression, ibid. 77 (1990), 521-528.
- [5] P. Hall and P. Patil, On wavelet methods for estimating smooth functions, J. Bernoulli Soc. 1 (1995), 41-58. Zbl0830.62037
- [6] G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New York, 1966. Zbl0153.38901
- [7] C. L. Mallows, Some comments on , Technometrics 15 (1973), 661-675.
- [8] E. Nadaraya, Limit distribution of the integrated squared error of trigonometric series regression estimator, Proc. Georgian Acad. Sci. Math. 1 (1993), 221-237. Zbl0796.62039
- [9] B. T. Polyak and A. B. Tsybakov, Asymptotic optimality of the criterion in projection type estimation of regression functions, Teor. Veroyatnost. Primenen. 35 (1990), 305-317 (in Russian).
- [10] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. Zbl0649.62034
- [11] A. Zygmund, Trigonometrical Series, Dover, 1955. Zbl0065.05604