Stochastic ordering of random kth record values

Wiesław Dziubdziela; Agata Tomicka-Stisz

Applicationes Mathematicae (1999)

  • Volume: 26, Issue: 3, page 293-298
  • ISSN: 1233-7234

Abstract

top
Let X 1 , X 2 , . . . be a sequence of independent and identically distributed random variables with continuous distribution function F(x). Denote by X(1,k),X(2,k),... the kth record values corresponding to X 1 , X 2 , . . . We obtain some stochastic comparison results involving the random kth record values X(N,k), where N is a positive integer-valued random variable which is independent of the X i .

How to cite

top

Dziubdziela, Wiesław, and Tomicka-Stisz, Agata. "Stochastic ordering of random kth record values." Applicationes Mathematicae 26.3 (1999): 293-298. <http://eudml.org/doc/219240>.

@article{Dziubdziela1999,
abstract = {Let $X_1,X_2,...$ be a sequence of independent and identically distributed random variables with continuous distribution function F(x). Denote by X(1,k),X(2,k),... the kth record values corresponding to $X_1,X_2,...$ We obtain some stochastic comparison results involving the random kth record values X(N,k), where N is a positive integer-valued random variable which is independent of the $X_i$.},
author = {Dziubdziela, Wiesław, Tomicka-Stisz, Agata},
journal = {Applicationes Mathematicae},
keywords = {stochastic comparison; likelihood ratio order; extreme value theory; hazard rate order; k-record values; random k-record values; random sums; -record values; random -record values},
language = {eng},
number = {3},
pages = {293-298},
title = {Stochastic ordering of random kth record values},
url = {http://eudml.org/doc/219240},
volume = {26},
year = {1999},
}

TY - JOUR
AU - Dziubdziela, Wiesław
AU - Tomicka-Stisz, Agata
TI - Stochastic ordering of random kth record values
JO - Applicationes Mathematicae
PY - 1999
VL - 26
IS - 3
SP - 293
EP - 298
AB - Let $X_1,X_2,...$ be a sequence of independent and identically distributed random variables with continuous distribution function F(x). Denote by X(1,k),X(2,k),... the kth record values corresponding to $X_1,X_2,...$ We obtain some stochastic comparison results involving the random kth record values X(N,k), where N is a positive integer-valued random variable which is independent of the $X_i$.
LA - eng
KW - stochastic comparison; likelihood ratio order; extreme value theory; hazard rate order; k-record values; random k-record values; random sums; -record values; random -record values
UR - http://eudml.org/doc/219240
ER -

References

top
  1. [1] P. Deheuvels, Strong approximations of kth records and kth record times by Wiener processes, Probab. Theory Related Fields 77 (1988), 195-209. Zbl0621.60087
  2. [2] W. Dziubdziela and B. Kopociński, Limiting properties of the k-th record values, Zastos. Mat. 15 (1976), 187-190. Zbl0337.60023
  3. [3] W. Freudenberg and D. Szynal, Limit laws for a random number of record values, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 193-199. Zbl0328.60017
  4. [4] Z. Grudzień, On distributions and moments of k-th record statistics with random index, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 99-102. 
  5. [5] R. C. Gupta and S. N. U. A. Kirmani, Closure and monotonicity properties of nonhomogeneous Poisson processes and record values, Probab. Engrg. Inform. Sci. 2 (1988), 475-484. Zbl1134.60313
  6. [6] U. Kamps, Reliability properties of record values from non-identically distributed random variables, Comm. Statist. Theory Methods 23 (1994), 2101-2112. Zbl0825.62193
  7. [7] S. Karlin, Pólya-type distributions, II, Ann. Math. Statist. 28 (1957), 281-308. Zbl0080.35605
  8. [8] J. Keilson and U. Sumita, Uniform stochastic ordering and related inequalities, Canad. J. Statist. 10 (1982), 181-198. Zbl0516.60063
  9. [9] S. N. U. A. Kirmani and R. C. Gupta, Some results on randomly stopped minimal repair processes, Comm. Statist. Stochastic Models 11 (1995), 631-644. Zbl0844.60061
  10. [10] S. C. Kochar, Some partial ordering results on record values, Comm. Statist. Theory Methods 19 (1990), 299-306. Zbl0900.62068
  11. [11] V. B. Nevzorov, Records, Theory Probab. Appl. 32 (1987), 201-228. 
  12. [12] M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic Press, New York, 1994. Zbl0806.62009
  13. [13] J. G. Shanthikumar and D. D. Yao, Bivariate characterization of some stochastic order relations, Adv. Appl. Probab. 23 (1991), 642-659. Zbl0745.62054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.