Sample path average optimality of Markov control processes with strictly unbounded cost
Applicationes Mathematicae (1999)
- Volume: 26, Issue: 4, page 363-381
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Arapostathis et al. (1993), Discrete time controlled Markov processes with an average cost criterion: A survey, SIAM J. Control Optim. 31, 282-344. Zbl0770.93064
- D. P. Bertsekas (1987), Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall, Englewood Cliffs, NJ. Zbl0649.93001
- D. P. Bertsekas and S. E. Shreve (1978), Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York. Zbl0471.93002
- P. Billingsley (1968), Convergence of Probability Measures, Wiley. Zbl0172.21201
- V. S. Borkar (1991), Topics in Controlled Markov Chains, Pitman Res. Notes Math. Ser. 240, Longman Sci. Tech. Zbl0725.93082
- R. Cavazos-Cadena and E. Fernández-Gaucherand (1995), Denumerable controlled Markov chains with average reward criterion : sample path optimality, Z. Oper. Res. 41, 89-108. Zbl0835.90116
- R. M. Dudley (1989), Real Analysis and Probability, Wadsworth & Brooks. Zbl0686.60001
- P. Hall and C. C. Heyde (1980), Martingale Limit Theory and Its Application, Academic Press. Zbl0462.60045
- O. Hernández-Lerma (1993), Existence of average optimal policies in Markov control processes with strictly unbounded costs, Kybernetika 29, 1-17. Zbl0792.93120
- O. Hernández-Lerma and J. B. Lasserre (1995), Invariant probabilities for Feller-Markov chains, J. Appl. Math. Stochastic Anal. 8, 341-345. Zbl0870.60061
- O. Hernández-Lerma and J. B. Lasserre (1996), Discrete-Time Markov Control Processes: Basic Optimality Criteria, Springer, New York. Zbl0840.93001
- O. Hernández-Lerma and J. B. Lasserre (1997), Policy iteration for average cost Markov control processes on Borel spaces, Acta Appl. Math., to appear. Zbl0872.93080
- O. Hernández-Lerma and M. Muñoz-de-Osak (1992), Discrete-time Markov con- trol processes with discounted unbounded cost: optimality criteria Kybernetika 28, 191-212. Zbl0771.93054
- O. Hernández-Lerma, O. Vega-Amaya and G. Carrasco (1998), Sample-path optimality and variance-minimization of average cost Markov control processes, Reporte Interno #236, Departamento de Matemáticas, CINVESTAV-IPN, México City. Zbl0951.93074
- K. Hinderer (1970), Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameters, Lecture Notes in Oper. Res. and Math. Systems 33, Springer, Berlin. Zbl0202.18401
- J. B. Lasserre (1997), Sample-path average optimality for Markov control processes, Report No. 97102, LAAS-CNRS, Toulouse. Zbl0956.93066
- H. L. Lee and S. Nahmias (1993), Single-product, single-location models, in: Logistic of Production and Inventory, S. C. Graves, A. H. G. Rinnooy Kan and P. H. Zipkin (eds.), Handbooks in Operations Research and Management Science, Vol. 4, North-Holland, 3-51.
- P. Mandl and M. Lausmanová (1991), Two extensions of asymptotic methods in controlled Markov chains, Ann. Oper. Res. 28, 67-80. Zbl0754.60081
- S. P. Meyn (1989), Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function, SIAM J. Control Optim. 27, 1409-1439. Zbl0681.60067
- S. P. Meyn (1995), The policy iteration algorithm for average reward Markov decision processes with general state space, preprint, Coordinated Science Laboratory, University of Illinois, Urbana, IL.
- S. P. Meyn and R. L. Tweedie (1993), Markov Chains and Stochastic Stability, Springer, London. Zbl0925.60001
- M. Parlar and R. Rempała (1992), Stochastic inventory problem with piecewise quadratic holding cost function containing a cost-free interval, J. Optim. Theory Appl. 75, 133-153. Zbl0795.90014
- O. Vega-Amaya and R. Montes-de-Oca (1998), Application of average dynamic programming to inventory systems, Math. Methods Oper. Res. 47, 451-471. Zbl0940.90007