Local convergence of inexact Newton methods under affine invariant conditions and hypotheses on the second Fréchet derivative
Applicationes Mathematicae (1999)
- Volume: 26, Issue: 4, page 457-465
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] I. K. Argyros, On the convergence of some projection methods with perturbation, J. Comput. Appl. Math. 36 (1991), 255-258. Zbl0755.65056
- [2] I. K. Argyros, Comparing the radii of some balls appearing in connection to three local convergence theorems for Newton's method, Southwest J. Pure Appl. Math. 1 (1998), 32-43.
- [3] I. K. Argyros, Relations between forcing sequences and inexact Newton iterates in Banach space, Computing 62 (1999), 71-82. Zbl0937.65062
- [4] I. K. Argyros and F. Szidarovszky, The Theory and Application of Iteration Methods, CRC Press, Boca Raton, FL, 1993. Zbl0844.65052
- [5] P. N. Brown, A local convergence theory for combined inexact-Newton/finite-difference projection methods, SIAM J. Numer. Anal. 24 (1987), 407-434. Zbl0618.65037
- [6] R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19, (1982), 400-408. Zbl0478.65030
- [7] J. M. Gutierrez, A new semilocal convergence theorem for Newton's method, J. Comput. Appl. Math. 79 (1997), 131-145. Zbl0872.65045
- [8] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982. Zbl0484.46003
- [9] F. A. Potra, On Q-order and R-order of convergence, SIAM J. Optim. Theory Appl. 63 (1989), 415-431. Zbl0663.65049
- [10] T. J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (1984), 583-590. Zbl0566.65037