On Henrici's transformation in optimization

B. Rhanizar

Applicationes Mathematicae (2000)

  • Volume: 27, Issue: 2, page 127-141
  • ISSN: 1233-7234

Abstract

top
Henrici’s transformation is a generalization of Aitken’s Δ 2 -process to the vector case. It has been used for accelerating vector sequences. We use a modified version of Henrici’s transformation for solving some unconstrained nonlinear optimization problems. A convergence acceleration result is established and numerical examples are given.

How to cite

top

Rhanizar, B.. "On Henrici's transformation in optimization." Applicationes Mathematicae 27.2 (2000): 127-141. <http://eudml.org/doc/219262>.

@article{Rhanizar2000,
abstract = {Henrici’s transformation is a generalization of Aitken’s $Δ^2$-process to the vector case. It has been used for accelerating vector sequences. We use a modified version of Henrici’s transformation for solving some unconstrained nonlinear optimization problems. A convergence acceleration result is established and numerical examples are given.},
author = {Rhanizar, B.},
journal = {Applicationes Mathematicae},
keywords = {Henrici's transformation; nonlinear optimization; unconstrained nonlinear optimization; convergence acceleration},
language = {eng},
number = {2},
pages = {127-141},
title = {On Henrici's transformation in optimization},
url = {http://eudml.org/doc/219262},
volume = {27},
year = {2000},
}

TY - JOUR
AU - Rhanizar, B.
TI - On Henrici's transformation in optimization
JO - Applicationes Mathematicae
PY - 2000
VL - 27
IS - 2
SP - 127
EP - 141
AB - Henrici’s transformation is a generalization of Aitken’s $Δ^2$-process to the vector case. It has been used for accelerating vector sequences. We use a modified version of Henrici’s transformation for solving some unconstrained nonlinear optimization problems. A convergence acceleration result is established and numerical examples are given.
LA - eng
KW - Henrici's transformation; nonlinear optimization; unconstrained nonlinear optimization; convergence acceleration
UR - http://eudml.org/doc/219262
ER -

References

top
  1. [1] A. Auslender, Optimisation: Méthodes Numériques, Masson, Paris, 1976. Zbl0326.90057
  2. [2] C. Brezinski, Accélération de la Convergence en Analyse Numérique, Springer, Berlin, 1977. Zbl0352.65003
  3. [3] C. Brezinski, Algorithmes d'Accélération de la Convergence, Etude Numérique, Editions Technip, Paris, 1978. Zbl0396.65001
  4. [4] P. G. Ciarlet, Introduction à l'Analyse Numérique Matricielle et à l'Optimisation, Masson, Paris, 1985. Zbl0488.65001
  5. [5] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods For Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983. 
  6. [6] I. Gohberg and S. Golderg, Basic Operator Theory, Birkhäuser, Basel, 1981. 
  7. [7] P. Henrici, Elements of Numerical Analysis, Wiley, New York, 1964. Zbl0149.10901
  8. [8] A. Kolmogorov et S. Fomine, Eléments de la Théorie des Fonctions et de l'Analyse Fonctionnelle, Editions Mir, Moscou, 1979. 
  9. [9] H. Le Ferrand, Recherche d'extrema par les méthodes d'extrapolation, C. R. Acad. Sci. Paris Sér. I 318 (1994), 1043-1049. 
  10. [10] B. Rhanizar, On extrapolation methods in optimization, Appl. Numer. Math. 25 (1997), 485-498. Zbl0888.65070
  11. [11] H. Sadok, Accéleration de la convergence de suites vectorielles et méthodes point fixe, Thèse, Université des Sciences et Techniques de Lille, 1988. 
  12. [12] J. Vignes, Algorithmes Numériques, Analyse et Mise en Œuvre, Vol. 2, Editions Technip, Paris, 1980. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.