The effect of rounding errors on a certain class of iterative methods
Applicationes Mathematicae (2000)
- Volume: 27, Issue: 3, page 369-375
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] I. K. Argyros, On the convergence of some projection methods with perturbations, J. Comput. Appl. Math. 36 (1991), 255-258. Zbl0755.65056
- [2] I. K. Argyros, Concerning the radius of convergence of Newton's method and applications, Korean J. Comput. Appl. Math. 6 (1999), 451-462. Zbl0937.65065
- [3] I. K. Argyros and F. Szidarovszky, The Theory and Application of Iteration Methods, CRC Press, Boca Raton, FL, 1993. Zbl0844.65052
- [4] R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982), 400-408. Zbl0478.65030
- [5] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982. Zbl0484.46003
- [6] T. J. Ypma, Numerical solution of systems of nonlinear algebraic equations, Ph.D. thesis, Oxford, 1982.
- [7] T. J. Ypma, Affine invariant convergence results for Newton's method, BIT 22 (1982), 108-118. Zbl0481.65027
- [8] T. J. Ypma, The effect of rounding errors on Newton-like methods, IMA J. Numer. Anal. 3 (1983), 109-118. Zbl0519.65026