Radially symmetric solutions of the Poisson-Boltzmann equation with a given energy
Tadeusz Nadzieja; Andrzej Raczyński
Applicationes Mathematicae (2000)
- Volume: 27, Issue: 4, page 465-473
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Bandle, Isoperimetric Inequalities and Applications, Monographs Stud. Math. 7, Pitman, New York, 1980. Zbl0436.35063
- [2] P. Biler, A. Krzywicki and T. Nadzieja, Self-interaction of Brownian particles coupled with thermodynamic processes, Rep. Math. Phys. 42 (1998), 359-372. Zbl1010.82028
- [3] Ya. I. Frenkel', Statistical Physics, Izdat. Akad. Nauk SSSR, Moscow, 1948 (in Russian).
- [4] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Grundlehren Math. Wiss. 224, Berlin, 2nd ed., 1983. Zbl0562.35001
- [5] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), 303-342. Zbl0485.35031
- [6] A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Appl. Math. (Warsaw) 21 (1991), 365-272. Zbl0756.35029
- [7] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001
- [8] R. F. Streater, A gas of Brownian particles in stochastic dynamics, J. Statist. Phys. 88 (1997), 447-469. Zbl0939.82026