Equations in linear spaces

Przeworska-Rolewicz, Danuta; Rolewicz, Stefan

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1968

Abstract

top
CONTENTSPreface...................... 5Acknowledgment...................... 7PART A. LINEAR OPERATORS IN LINEAR SPACESCHAPTER I. Operators with a finite and semifinite dimensional characteristic........ 25CHAPTER II. Algebraic and almost algebraic operators........ 65CHAPTER III. Φ_Ξ-operators........ 90CHAPTER IV. Determinant theory of Φ_Ξ-operators........ 102PART B. LINEAR OPERATORS IN LINEAR TOPOLOGICAL SPACESCHAPTER I. Linear topological and linear metric space........ 115CHAPTER II. Continuous linear operators in linear topological space........ 157CHAPTER III. Φ-operators in linear topological space........ 182CHAPTER IV. Compact operators in linear topological space........ 189PART C. LINEAR OPERATORS IN BANACH SPACECHAPTER I. Banach space........ 210CHAPTER II. Paraalgebras of operators over Banach space........ 238CHAPTER III. Φ-operators in Banach space........ 275CHAPTER IV. Φ-points and the theorem on special decomposition........ 298CHAPTER 5. Perturbations of Φ+-, Φ+- and Φ-operators........ 311PART D. EXAMPLES OF APPLICATIONSCHAPTER I. Fredholm Alternative........ 319CHAPTER II. Singular integral equations........ 331CHAPTER III. Operator equations with the Fourier transform and similar transforms........ 350APPENDIX. Hölder and Minkowski inequalities........ 355Bibliographical remarks........ 357Bibliography........ 361List of symbols........ 371Subject index........ 373Author index........ 379

How to cite

top

Przeworska-Rolewicz, Danuta, and Rolewicz, Stefan. Equations in linear spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1968. <http://eudml.org/doc/219294>.

@book{Przeworska1968,
abstract = {CONTENTSPreface...................... 5Acknowledgment...................... 7PART A. LINEAR OPERATORS IN LINEAR SPACESCHAPTER I. Operators with a finite and semifinite dimensional characteristic........ 25CHAPTER II. Algebraic and almost algebraic operators........ 65CHAPTER III. Φ\_Ξ-operators........ 90CHAPTER IV. Determinant theory of Φ\_Ξ-operators........ 102PART B. LINEAR OPERATORS IN LINEAR TOPOLOGICAL SPACESCHAPTER I. Linear topological and linear metric space........ 115CHAPTER II. Continuous linear operators in linear topological space........ 157CHAPTER III. Φ-operators in linear topological space........ 182CHAPTER IV. Compact operators in linear topological space........ 189PART C. LINEAR OPERATORS IN BANACH SPACECHAPTER I. Banach space........ 210CHAPTER II. Paraalgebras of operators over Banach space........ 238CHAPTER III. Φ-operators in Banach space........ 275CHAPTER IV. Φ-points and the theorem on special decomposition........ 298CHAPTER 5. Perturbations of Φ+-, Φ+- and Φ-operators........ 311PART D. EXAMPLES OF APPLICATIONSCHAPTER I. Fredholm Alternative........ 319CHAPTER II. Singular integral equations........ 331CHAPTER III. Operator equations with the Fourier transform and similar transforms........ 350APPENDIX. Hölder and Minkowski inequalities........ 355Bibliographical remarks........ 357Bibliography........ 361List of symbols........ 371Subject index........ 373Author index........ 379},
author = {Przeworska-Rolewicz, Danuta, Rolewicz, Stefan},
keywords = {functional analysis},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Equations in linear spaces},
url = {http://eudml.org/doc/219294},
year = {1968},
}

TY - BOOK
AU - Przeworska-Rolewicz, Danuta
AU - Rolewicz, Stefan
TI - Equations in linear spaces
PY - 1968
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPreface...................... 5Acknowledgment...................... 7PART A. LINEAR OPERATORS IN LINEAR SPACESCHAPTER I. Operators with a finite and semifinite dimensional characteristic........ 25CHAPTER II. Algebraic and almost algebraic operators........ 65CHAPTER III. Φ_Ξ-operators........ 90CHAPTER IV. Determinant theory of Φ_Ξ-operators........ 102PART B. LINEAR OPERATORS IN LINEAR TOPOLOGICAL SPACESCHAPTER I. Linear topological and linear metric space........ 115CHAPTER II. Continuous linear operators in linear topological space........ 157CHAPTER III. Φ-operators in linear topological space........ 182CHAPTER IV. Compact operators in linear topological space........ 189PART C. LINEAR OPERATORS IN BANACH SPACECHAPTER I. Banach space........ 210CHAPTER II. Paraalgebras of operators over Banach space........ 238CHAPTER III. Φ-operators in Banach space........ 275CHAPTER IV. Φ-points and the theorem on special decomposition........ 298CHAPTER 5. Perturbations of Φ+-, Φ+- and Φ-operators........ 311PART D. EXAMPLES OF APPLICATIONSCHAPTER I. Fredholm Alternative........ 319CHAPTER II. Singular integral equations........ 331CHAPTER III. Operator equations with the Fourier transform and similar transforms........ 350APPENDIX. Hölder and Minkowski inequalities........ 355Bibliographical remarks........ 357Bibliography........ 361List of symbols........ 371Subject index........ 373Author index........ 379
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/219294
ER -

Citations in EuDML Documents

top
  1. Nguyen Van Mau, Nguyen Minh Tuan, On solutions of integral equations with analytic kernels and rotations
  2. Štefan Schwabik, Remark on linear equations in Banach space
  3. Philippe Turpin, Sur un problème de S. Simons concernant les bornés des espaces vectoriels topologiques
  4. K. D. Elworthy, Embeddings, isotopy and stability of Banach manifolds
  5. Josef Kolomý, A note on uniform boundedness principle for nonlinear operators
  6. Ivan Dobrakov, On representation of linear operators on C 0 ( T , 𝐗 )
  7. Ivan Dobrakov, Representation of multilinear operators on × C 0 ( T i )

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.