Estimation and prediction in regression models with random explanatory variables
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1992
Access Full Book
topAbstract
topHow to cite
topNguyen Bac-Van. Estimation and prediction in regression models with random explanatory variables. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1992. <http://eudml.org/doc/219330>.
@book{NguyenBac1992,
abstract = {The regression model X(t),Y(t);t=1,...,n with random explanatory variable X is transformed by prescribing a partition $S_\{1\},...,S_\{k\}$ of the given domain S of X-values and specifying$\{X(1),...,X(n)\} ∩ S_\{i\} = \{X_\{i1\},...,X_\{iα(i)\} \}, i=1,...,k.$Through the conditioning$\{α(i)=a(i), i=1,...,k\}, \{X_\{i1\},...,X_\{iα(i)\}; i=1,...,k\} = \{x_\{11\},...,x_\{ka(k)\}\}$the initial model with i.i.d. pairs (X(t),Y(t)),t=1,...,n, becomes a conditional fixed-design $(x_\{11\},...,x_\{ka(k)\})$ model$\{Y_\{ij\},i=1,...,k;j=1,...,a(i)\}$where the response variables $Y_\{ij\}$ are independent and distributed according to the mixed conditional distribution $Q(·,x_\{ij\})$ of Y given X at the observed value $x_\{ij\}$.Afterwards, we investigate the case$(Q)E(Y^\{\prime \}|x) = ∑^k_\{i=1\} b_\{i\}(x)θ_\{i\} I_\{S_\{i\}\}(x), (Q)D(Y|x) = ∑^k_\{i=1\} d_\{i\}(x)Σ_\{i\}I_\{S_\{i\}\}(x)$which arises when the conditional distribution law of Y given X changes as X passes from a domain $S_\{i\}$ to another, whence Y follows a mixture of distributions. Then the general transformation gives the equivalent reduction to a conditional multivariate Behrens-Fisher model. We construct conditional generalized least squares estimators of $θ^\{\prime \} = (θ^\{\prime \}_\{1\}⋮ ⋯⋮ θ^\{\prime \}_\{k\})$ and predictors of Y(n+1) given X(n+1) = x ∈ S. Through some condition imposed on the range of θ, the CGLS estimator and predictor are shown to enjoy local and global optimality.CONTENTSPreface..................................................................................................................................................................................................................5I. A data transformation preserving the conditional distribution and localizing the explanatory variable.................................................................61. Introduction........................................................................................................................................................................................................62. Theorems on data transformation......................................................................................................................................................................73. Proofs of the theorems.......................................................................................................................................................................................94. Interpretation of the theorems..........................................................................................................................................................................14II. Conditional linear models and estimation of regression parameters.................................................................................................................175. Introduction......................................................................................................................................................................................................176. Conditional generalized least squares estimators (CGLSE).............................................................................................................................197. Conditional estimability.....................................................................................................................................................................................258. Properties of the CGLSE..................................................................................................................................................................................29III. Prediction of the response variable.................................................................................................................................................................349. Introduction......................................................................................................................................................................................................3510. Predictors connnected wi.th the CGLSE........................................................................................................................................................3511. Properties of CGLS predictors.......................................................................................................................................................................38References..........................................................................................................................................................................................................431991 Mathematics Subject Classification: Primary 62J02; Secondary 62F11.},
author = {Nguyen Bac-Van},
keywords = {least squares procedure; random explanatory variable regression problems; conditional fixed-design model; data transformation; conditioning; asymptotic estimability; conditional unbiasedness; conditional generalized least squares estimates; prediction problem},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Estimation and prediction in regression models with random explanatory variables},
url = {http://eudml.org/doc/219330},
year = {1992},
}
TY - BOOK
AU - Nguyen Bac-Van
TI - Estimation and prediction in regression models with random explanatory variables
PY - 1992
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - The regression model X(t),Y(t);t=1,...,n with random explanatory variable X is transformed by prescribing a partition $S_{1},...,S_{k}$ of the given domain S of X-values and specifying${X(1),...,X(n)} ∩ S_{i} = {X_{i1},...,X_{iα(i)} }, i=1,...,k.$Through the conditioning${α(i)=a(i), i=1,...,k}, {X_{i1},...,X_{iα(i)}; i=1,...,k} = {x_{11},...,x_{ka(k)}}$the initial model with i.i.d. pairs (X(t),Y(t)),t=1,...,n, becomes a conditional fixed-design $(x_{11},...,x_{ka(k)})$ model${Y_{ij},i=1,...,k;j=1,...,a(i)}$where the response variables $Y_{ij}$ are independent and distributed according to the mixed conditional distribution $Q(·,x_{ij})$ of Y given X at the observed value $x_{ij}$.Afterwards, we investigate the case$(Q)E(Y^{\prime }|x) = ∑^k_{i=1} b_{i}(x)θ_{i} I_{S_{i}}(x), (Q)D(Y|x) = ∑^k_{i=1} d_{i}(x)Σ_{i}I_{S_{i}}(x)$which arises when the conditional distribution law of Y given X changes as X passes from a domain $S_{i}$ to another, whence Y follows a mixture of distributions. Then the general transformation gives the equivalent reduction to a conditional multivariate Behrens-Fisher model. We construct conditional generalized least squares estimators of $θ^{\prime } = (θ^{\prime }_{1}⋮ ⋯⋮ θ^{\prime }_{k})$ and predictors of Y(n+1) given X(n+1) = x ∈ S. Through some condition imposed on the range of θ, the CGLS estimator and predictor are shown to enjoy local and global optimality.CONTENTSPreface..................................................................................................................................................................................................................5I. A data transformation preserving the conditional distribution and localizing the explanatory variable.................................................................61. Introduction........................................................................................................................................................................................................62. Theorems on data transformation......................................................................................................................................................................73. Proofs of the theorems.......................................................................................................................................................................................94. Interpretation of the theorems..........................................................................................................................................................................14II. Conditional linear models and estimation of regression parameters.................................................................................................................175. Introduction......................................................................................................................................................................................................176. Conditional generalized least squares estimators (CGLSE).............................................................................................................................197. Conditional estimability.....................................................................................................................................................................................258. Properties of the CGLSE..................................................................................................................................................................................29III. Prediction of the response variable.................................................................................................................................................................349. Introduction......................................................................................................................................................................................................3510. Predictors connnected wi.th the CGLSE........................................................................................................................................................3511. Properties of CGLS predictors.......................................................................................................................................................................38References..........................................................................................................................................................................................................431991 Mathematics Subject Classification: Primary 62J02; Secondary 62F11.
LA - eng
KW - least squares procedure; random explanatory variable regression problems; conditional fixed-design model; data transformation; conditioning; asymptotic estimability; conditional unbiasedness; conditional generalized least squares estimates; prediction problem
UR - http://eudml.org/doc/219330
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.