Some contributions to the differential geometry of submanifolds

Barbara Opozda

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1992

Abstract

top
CONTENTSI. 1. Introduction..................................................................................................................................................................5   2. Preliminaries..............................................................................................................................................................11   3. On Simon’s conjecture..............................................................................................................................................13II. Pinching theorems for submanifolds of the nearly Kähler 6-sphere..............................................................................16   1. The nearly Kähler structure on S⁶(1)........................................................................................................................16   2. 3-dimensional totally real submanifolds of S⁶............................................................................................................18   3. Totally real surfaces in S⁶..........................................................................................................................................27III. Surfaces in complex and Sasakian space forms with parallel mean curvature vector...................................................31   1. Totally real surfaces in Kähler manifolds...................................................................................................................31   2. Surfaces of genus 0 with parallel mean curvature vector..........................................................................................34   3. Reduction theorems..................................................................................................................................................51   4. Surfaces of genus 0, C-totally real immersed in Sasakian space forms with parallel mean curvature vector............56References......................................................................................................................................................................631991 Mathematics Subject Classification: Primary 53C20; Secondary 53A10.

How to cite

top

Barbara Opozda. Some contributions to the differential geometry of submanifolds. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1992. <http://eudml.org/doc/219348>.

@book{BarbaraOpozda1992,
abstract = {CONTENTSI. 1. Introduction..................................................................................................................................................................5   2. Preliminaries..............................................................................................................................................................11   3. On Simon’s conjecture..............................................................................................................................................13II. Pinching theorems for submanifolds of the nearly Kähler 6-sphere..............................................................................16   1. The nearly Kähler structure on S⁶(1)........................................................................................................................16   2. 3-dimensional totally real submanifolds of S⁶............................................................................................................18   3. Totally real surfaces in S⁶..........................................................................................................................................27III. Surfaces in complex and Sasakian space forms with parallel mean curvature vector...................................................31   1. Totally real surfaces in Kähler manifolds...................................................................................................................31   2. Surfaces of genus 0 with parallel mean curvature vector..........................................................................................34   3. Reduction theorems..................................................................................................................................................51   4. Surfaces of genus 0, C-totally real immersed in Sasakian space forms with parallel mean curvature vector............56References......................................................................................................................................................................631991 Mathematics Subject Classification: Primary 53C20; Secondary 53A10.},
author = {Barbara Opozda},
keywords = {complex space forms; surfaces with parallel mean curvature vector; pinching theorems for submanifolds; nearly Kähler 6-sphere; Sasakian space forms},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Some contributions to the differential geometry of submanifolds},
url = {http://eudml.org/doc/219348},
year = {1992},
}

TY - BOOK
AU - Barbara Opozda
TI - Some contributions to the differential geometry of submanifolds
PY - 1992
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. 1. Introduction..................................................................................................................................................................5   2. Preliminaries..............................................................................................................................................................11   3. On Simon’s conjecture..............................................................................................................................................13II. Pinching theorems for submanifolds of the nearly Kähler 6-sphere..............................................................................16   1. The nearly Kähler structure on S⁶(1)........................................................................................................................16   2. 3-dimensional totally real submanifolds of S⁶............................................................................................................18   3. Totally real surfaces in S⁶..........................................................................................................................................27III. Surfaces in complex and Sasakian space forms with parallel mean curvature vector...................................................31   1. Totally real surfaces in Kähler manifolds...................................................................................................................31   2. Surfaces of genus 0 with parallel mean curvature vector..........................................................................................34   3. Reduction theorems..................................................................................................................................................51   4. Surfaces of genus 0, C-totally real immersed in Sasakian space forms with parallel mean curvature vector............56References......................................................................................................................................................................631991 Mathematics Subject Classification: Primary 53C20; Secondary 53A10.
LA - eng
KW - complex space forms; surfaces with parallel mean curvature vector; pinching theorems for submanifolds; nearly Kähler 6-sphere; Sasakian space forms
UR - http://eudml.org/doc/219348
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.