Some contributions to the differential geometry of submanifolds
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1992
Access Full Book
topAbstract
topHow to cite
topBarbara Opozda. Some contributions to the differential geometry of submanifolds. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1992. <http://eudml.org/doc/219348>.
@book{BarbaraOpozda1992,
abstract = {CONTENTSI. 1. Introduction..................................................................................................................................................................5 2. Preliminaries..............................................................................................................................................................11 3. On Simon’s conjecture..............................................................................................................................................13II. Pinching theorems for submanifolds of the nearly Kähler 6-sphere..............................................................................16 1. The nearly Kähler structure on S⁶(1)........................................................................................................................16 2. 3-dimensional totally real submanifolds of S⁶............................................................................................................18 3. Totally real surfaces in S⁶..........................................................................................................................................27III. Surfaces in complex and Sasakian space forms with parallel mean curvature vector...................................................31 1. Totally real surfaces in Kähler manifolds...................................................................................................................31 2. Surfaces of genus 0 with parallel mean curvature vector..........................................................................................34 3. Reduction theorems..................................................................................................................................................51 4. Surfaces of genus 0, C-totally real immersed in Sasakian space forms with parallel mean curvature vector............56References......................................................................................................................................................................631991 Mathematics Subject Classification: Primary 53C20; Secondary 53A10.},
author = {Barbara Opozda},
keywords = {complex space forms; surfaces with parallel mean curvature vector; pinching theorems for submanifolds; nearly Kähler 6-sphere; Sasakian space forms},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Some contributions to the differential geometry of submanifolds},
url = {http://eudml.org/doc/219348},
year = {1992},
}
TY - BOOK
AU - Barbara Opozda
TI - Some contributions to the differential geometry of submanifolds
PY - 1992
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. 1. Introduction..................................................................................................................................................................5 2. Preliminaries..............................................................................................................................................................11 3. On Simon’s conjecture..............................................................................................................................................13II. Pinching theorems for submanifolds of the nearly Kähler 6-sphere..............................................................................16 1. The nearly Kähler structure on S⁶(1)........................................................................................................................16 2. 3-dimensional totally real submanifolds of S⁶............................................................................................................18 3. Totally real surfaces in S⁶..........................................................................................................................................27III. Surfaces in complex and Sasakian space forms with parallel mean curvature vector...................................................31 1. Totally real surfaces in Kähler manifolds...................................................................................................................31 2. Surfaces of genus 0 with parallel mean curvature vector..........................................................................................34 3. Reduction theorems..................................................................................................................................................51 4. Surfaces of genus 0, C-totally real immersed in Sasakian space forms with parallel mean curvature vector............56References......................................................................................................................................................................631991 Mathematics Subject Classification: Primary 53C20; Secondary 53A10.
LA - eng
KW - complex space forms; surfaces with parallel mean curvature vector; pinching theorems for submanifolds; nearly Kähler 6-sphere; Sasakian space forms
UR - http://eudml.org/doc/219348
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.