Genericità dell'iperbolicità nei sistemi differenziali lineari di dimensione due

Roberta Fabbri

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-A, Issue: 1S, page 109-111
  • ISSN: 0392-4041

How to cite

top

Fabbri, Roberta. "Genericità dell'iperbolicità nei sistemi differenziali lineari di dimensione due." Bollettino dell'Unione Matematica Italiana 1-A.1S (1998): 109-111. <http://eudml.org/doc/219370>.

@article{Fabbri1998,
author = {Fabbri, Roberta},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {4},
number = {1S},
pages = {109-111},
publisher = {Unione Matematica Italiana},
title = {Genericità dell'iperbolicità nei sistemi differenziali lineari di dimensione due},
url = {http://eudml.org/doc/219370},
volume = {1-A},
year = {1998},
}

TY - JOUR
AU - Fabbri, Roberta
TI - Genericità dell'iperbolicità nei sistemi differenziali lineari di dimensione due
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/4//
PB - Unione Matematica Italiana
VL - 1-A
IS - 1S
SP - 109
EP - 111
LA - ita
UR - http://eudml.org/doc/219370
ER -

References

top
  1. CHULAEVSKY, V. and SINAI, YA., Anderson Localization for the I-D. Discrete Schrodinger Operators with Two-Frequency Potential, Comm. Math. Phys., 125 (1989), 91-112. Zbl0743.60058MR1017741
  2. JOHNSON, R., Hopf bifurcation from non periodic solutions of differential equations I. Linear Theory, Journ. Dyn. Diff. Eqns, 1 (1989), 179-198. Zbl0684.34038MR1010965DOI10.1007/BF01047830
  3. JOHNSON, R., Cantor Spectrum for the Quasi-periodic Schrodinger Equation, Journ. of Diff. Eqns, 91 (1991), 88-110. Zbl0734.34074MR1106119DOI10.1016/0022-0396(91)90133-T
  4. MAÑÉ, R., Oseledec's Theorem from the Generic Viewpoint, Proc. Int. Congr. Math. (1983, Warsaw), 1269-1276. Zbl0584.58007MR804776
  5. MAÑÉ, R.,The Lyapunov exponents of generic area preserving diffeomorphisms, Manoscritto (1984). 
  6. MILLIONŠČIKOV, V., Proof of the existence...almost periodic coefficients, Diff. Eqns, 4 (1968), 203-205. Zbl0236.34006MR229912
  7. MILLIONŠČIKOV, V., Typicality of almost reducible systems with almost periodic coefficients, Diff. Eqns, 14 (1978), 448-450. Zbl0434.34027MR508462
  8. VINOGRAD, R., A problem suggested by N.P.Erugin, Diff. Eqns., 11 (1975), 474-478. Zbl0331.34012MR473360

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.