Algoritmi di ottimizzazione globale
Bollettino dell'Unione Matematica Italiana (1998)
- Volume: 1-A, Issue: 1S, page 189-192
- ISSN: 0392-4041
Access Full Article
topHow to cite
topLocatelli, Marco. "Algoritmi di ottimizzazione globale." Bollettino dell'Unione Matematica Italiana 1-A.1S (1998): 189-192. <http://eudml.org/doc/219482>.
@article{Locatelli1998,
author = {Locatelli, Marco},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {simulated annealing; multistart algorithms; Bayesian algorithms; branch-and-bound; global minimization},
language = {ita},
month = {4},
number = {1S},
pages = {189-192},
publisher = {Unione Matematica Italiana},
title = {Algoritmi di ottimizzazione globale},
url = {http://eudml.org/doc/219482},
volume = {1-A},
year = {1998},
}
TY - JOUR
AU - Locatelli, Marco
TI - Algoritmi di ottimizzazione globale
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/4//
PB - Unione Matematica Italiana
VL - 1-A
IS - 1S
SP - 189
EP - 192
LA - ita
KW - simulated annealing; multistart algorithms; Bayesian algorithms; branch-and-bound; global minimization
UR - http://eudml.org/doc/219482
ER -
References
top- BELISLE, C.J.P., Convergence Theorems for a Class of Simulateci Annealing Algorithms on , J. Appl. Prob., 29 (1992), 885-892. Zbl0765.65059MR1188544
- CERNY, V., Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm, J. Optim. Theory Appl., 45 (1985), 41-51. Zbl0534.90091MR778156DOI10.1007/BF00940812
- GELFAND, S.B. e MITTER, S.K., Metropolis-type annealing algorithms for global optimization in , SIAM J. of Control and Optimization, 31, No. 1 (1993), 111-131. Zbl0814.65059MR1200226DOI10.1137/0331009
- HAJEK, B., Cooling schedules for optimal annealing, Mathematics of Operations Research, 13 (1988), 311-329. Zbl0652.65050MR942621DOI10.1287/moor.13.2.311
- HORST, R. e TUY, H., Global optimization: deterministic approaches, (second edition), Springer-Verlag (1992). Zbl0704.90057MR1102239
- HORST R. e PARDALOS P. (editori), Handbook of global optimization, Kluwer Academic Publishers (1995). Zbl0805.00009MR1377081
- KIRKPATRICK, S., GELATT, C.D. e VECCHI, M.P., Optimization by Simulated Annealing, Science, 220 (1983), 671-680. Zbl1225.90162MR702485DOI10.1109/PROC.1987.13916
- KUSHNER, H., A versatile stochastic model of a function of unknown and time varying form, Journal of Math. Anal. Appl., 5 (1962), 150-167. Zbl0111.33001MR141213
- METROPOLIS, N., ROSENBLUTH, A.W., ROSENBLUTH, M.N. e TELLER, A.H., Equation of State Calculations by Fast Computer Machines, J. Chem. Phys., 21 (1953), 1087.
- PARDALOS, P.M. e SCHNITGER, G., Checking local optimality in constrained quadratic programming is NP-hard, Operations Research Letters, 7 (1988), 33-35. Zbl0644.90067MR936349DOI10.1016/0167-6377(88)90049-1
- RINNOOY KAN, A.H.G. e TIMMER, G., Stochastic global optimization methods. Part i: clustering methods, Mathematical Programming, 39 (1987), 27-56. Zbl0634.90066MR909007DOI10.1007/BF02592070
- RINNOOY KAN, A.H.G. e TIMMER, G., Stochastic global optimization methods. Part ii: multi level methods, Mathematical Programming, 39 (1987), 57-78. Zbl0634.90067MR909008DOI10.1007/BF02592071
- ZILINSKAS, A., One-step Bayesian method of the search for extremum of an one-di-mensional function, Cybernetics, 1 (1975), 139-144. Zbl0315.90035MR416031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.