# Sequences of Maximal Degree Vertices in Graphs

Khadzhiivanov, Nickolay; Nenov, Nedyalko

Serdica Mathematical Journal (2004)

- Volume: 30, Issue: 1, page 95-102
- ISSN: 1310-6600

## Access Full Article

top## Abstract

top## How to cite

topKhadzhiivanov, Nickolay, and Nenov, Nedyalko. "Sequences of Maximal Degree Vertices in Graphs." Serdica Mathematical Journal 30.1 (2004): 95-102. <http://eudml.org/doc/219512>.

@article{Khadzhiivanov2004,

abstract = {2000 Mathematics Subject Classification: 05C35.Let Γ(M ) where M ⊂ V (G) be the set of all vertices of the graph G adjacent to any vertex of M.
If v1, . . . , vr is a vertex sequence in G such that Γ(v1, . . . , vr ) = ∅ and vi is a maximal degree vertex in Γ(v1, . . . , vi−1),
we prove that e(G) ≤ e(K(p1, . . . , pr)) where K(p1, . . . , pr ) is the complete r-partite graph with pi = |Γ(v1, . . . , vi−1) Γ(vi )|.},

author = {Khadzhiivanov, Nickolay, Nenov, Nedyalko},

journal = {Serdica Mathematical Journal},

keywords = {Maximal Degree Vertex; Complete S-partite Graph; Turan’s Graph; Maximal degree vertex; complete -partite graph; Turán’s graph},

language = {eng},

number = {1},

pages = {95-102},

publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},

title = {Sequences of Maximal Degree Vertices in Graphs},

url = {http://eudml.org/doc/219512},

volume = {30},

year = {2004},

}

TY - JOUR

AU - Khadzhiivanov, Nickolay

AU - Nenov, Nedyalko

TI - Sequences of Maximal Degree Vertices in Graphs

JO - Serdica Mathematical Journal

PY - 2004

PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences

VL - 30

IS - 1

SP - 95

EP - 102

AB - 2000 Mathematics Subject Classification: 05C35.Let Γ(M ) where M ⊂ V (G) be the set of all vertices of the graph G adjacent to any vertex of M.
If v1, . . . , vr is a vertex sequence in G such that Γ(v1, . . . , vr ) = ∅ and vi is a maximal degree vertex in Γ(v1, . . . , vi−1),
we prove that e(G) ≤ e(K(p1, . . . , pr)) where K(p1, . . . , pr ) is the complete r-partite graph with pi = |Γ(v1, . . . , vi−1) Γ(vi )|.

LA - eng

KW - Maximal Degree Vertex; Complete S-partite Graph; Turan’s Graph; Maximal degree vertex; complete -partite graph; Turán’s graph

UR - http://eudml.org/doc/219512

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.