Triangular Models and Asymptotics of Continuous Curves with Bounded and Unbounded Semigroup Generators

Kirchev, Kiril; Borisova, Galina

Serdica Mathematical Journal (2005)

  • Volume: 31, Issue: 1-2, page 95-174
  • ISSN: 1310-6600

Abstract

top
2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.In this paper classes of K^r -operators are considered – the classes of bounded and unbounded operators A with equal domains of A and A*, finite dimensional imaginary parts and presented as a coupling of a dissipative operator and an antidissipative one with real absolutely continuous spectra and the class of unbounded dissipative K^r -operators A with different domains of A and A* and with real absolutely continuous spectra. Their triangular models are presented. The asymptotics of the corresponding continuous curves with generators from these classes are obtained in an explicit form. With the help of the obtained asymptotics the scattering theory for the couples (A*, A) when A belongs to the introduced classes is constructed.Partially supported by Grant MM-1403/04 of MESC and by Scientific Research Grants 19/13.03.2003 and 26/01.04.2004 of Shumen University.

How to cite

top

Kirchev, Kiril, and Borisova, Galina. "Triangular Models and Asymptotics of Continuous Curves with Bounded and Unbounded Semigroup Generators." Serdica Mathematical Journal 31.1-2 (2005): 95-174. <http://eudml.org/doc/219632>.

@article{Kirchev2005,
abstract = {2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.In this paper classes of K^r -operators are considered – the classes of bounded and unbounded operators A with equal domains of A and A*, finite dimensional imaginary parts and presented as a coupling of a dissipative operator and an antidissipative one with real absolutely continuous spectra and the class of unbounded dissipative K^r -operators A with different domains of A and A* and with real absolutely continuous spectra. Their triangular models are presented. The asymptotics of the corresponding continuous curves with generators from these classes are obtained in an explicit form. With the help of the obtained asymptotics the scattering theory for the couples (A*, A) when A belongs to the introduced classes is constructed.Partially supported by Grant MM-1403/04 of MESC and by Scientific Research Grants 19/13.03.2003 and 26/01.04.2004 of Shumen University.},
author = {Kirchev, Kiril, Borisova, Galina},
journal = {Serdica Mathematical Journal},
keywords = {Unbounded Operator; Operator Colligation; Characteristic Function; Nondissipative Curve; Correlation Function; Wave Operator; Scattering Operator; unbounded operator; operator colligation; characteristic function; nondissipative curve; correlation function; wave operator; scattering operator},
language = {eng},
number = {1-2},
pages = {95-174},
publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},
title = {Triangular Models and Asymptotics of Continuous Curves with Bounded and Unbounded Semigroup Generators},
url = {http://eudml.org/doc/219632},
volume = {31},
year = {2005},
}

TY - JOUR
AU - Kirchev, Kiril
AU - Borisova, Galina
TI - Triangular Models and Asymptotics of Continuous Curves with Bounded and Unbounded Semigroup Generators
JO - Serdica Mathematical Journal
PY - 2005
PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences
VL - 31
IS - 1-2
SP - 95
EP - 174
AB - 2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.In this paper classes of K^r -operators are considered – the classes of bounded and unbounded operators A with equal domains of A and A*, finite dimensional imaginary parts and presented as a coupling of a dissipative operator and an antidissipative one with real absolutely continuous spectra and the class of unbounded dissipative K^r -operators A with different domains of A and A* and with real absolutely continuous spectra. Their triangular models are presented. The asymptotics of the corresponding continuous curves with generators from these classes are obtained in an explicit form. With the help of the obtained asymptotics the scattering theory for the couples (A*, A) when A belongs to the introduced classes is constructed.Partially supported by Grant MM-1403/04 of MESC and by Scientific Research Grants 19/13.03.2003 and 26/01.04.2004 of Shumen University.
LA - eng
KW - Unbounded Operator; Operator Colligation; Characteristic Function; Nondissipative Curve; Correlation Function; Wave Operator; Scattering Operator; unbounded operator; operator colligation; characteristic function; nondissipative curve; correlation function; wave operator; scattering operator
UR - http://eudml.org/doc/219632
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.