Congruences for Siegel modular forms
Dohoon Choi[1]; YoungJu Choie[2]; Olav K. Richter[3]
- [1] Korea Aerospace University School of Liberal Arts and Sciences Goyang 412-791 (South Korea)
- [2] Pohang University of Science and Technology Department of Mathematics Pohang 790-784 (South Korea)
- [3] University of North Texas Department of Mathematics Denton, TX 76203 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 4, page 1455-1466
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChoi, Dohoon, Choie, YoungJu, and Richter, Olav K.. "Congruences for Siegel modular forms." Annales de l’institut Fourier 61.4 (2011): 1455-1466. <http://eudml.org/doc/219668>.
@article{Choi2011,
abstract = {We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree $2$. In particular, we determine when an analog of Atkin’s $U(p)$-operator applied to a Siegel modular form of degree $2$ is nonzero modulo a prime $p$. Furthermore, we discuss explicit examples to illustrate our results.},
affiliation = {Korea Aerospace University School of Liberal Arts and Sciences Goyang 412-791 (South Korea); Pohang University of Science and Technology Department of Mathematics Pohang 790-784 (South Korea); University of North Texas Department of Mathematics Denton, TX 76203 (USA)},
author = {Choi, Dohoon, Choie, YoungJu, Richter, Olav K.},
journal = {Annales de l’institut Fourier},
keywords = {Congruences; Siegel modular forms; congruences},
language = {eng},
number = {4},
pages = {1455-1466},
publisher = {Association des Annales de l’institut Fourier},
title = {Congruences for Siegel modular forms},
url = {http://eudml.org/doc/219668},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Choi, Dohoon
AU - Choie, YoungJu
AU - Richter, Olav K.
TI - Congruences for Siegel modular forms
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1455
EP - 1466
AB - We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree $2$. In particular, we determine when an analog of Atkin’s $U(p)$-operator applied to a Siegel modular form of degree $2$ is nonzero modulo a prime $p$. Furthermore, we discuss explicit examples to illustrate our results.
LA - eng
KW - Congruences; Siegel modular forms; congruences
UR - http://eudml.org/doc/219668
ER -
References
top- S. Ahlgren, K. Ono, Arithmetic of singular moduli and class polynomials, Compos. Math. 141 (2005), 293-312 Zbl1133.11036MR2134268
- S. Böcherer, S. Nagaoka, On mod properties of Siegel modular forms, Math. Ann. 338 (2007), 421-433 Zbl1171.11029MR2302069
- Y. Choie, W. Eholzer, Rankin-Cohen operators for Jacobi and Siegel forms, J. Number Theory 68 (1998), 160-177 Zbl0958.11032MR1605899
- M. Eichler, D. Zagier, The theory of Jacobi forms, (1985), Birkhäuser, Boston Zbl0554.10018MR781735
- N. Elkies, K. Ono, T. Yang, Reduction of CM elliptic curves and modular function congruences, Internat. Math. Res. Notices (2005), 2695-2707 Zbl1166.11323MR2181309
- E. Freitag, Siegelsche Modulfunktionen, (1983), Springer, Berlin, Heidelberg, New York Zbl0498.10016MR871067
- P. Guerzhoy, On -adic families of Siegel cusp forms in the Maaß Spezialschar, J. Reine Angew. Math. 523 (2000), 103-112 Zbl0944.11015MR1762957
- J. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175-200 Zbl0133.33301MR141643
- J. Igusa, On the ring of modular forms of degree two over , Amer. J. Math. 101 (1979), 149-183 Zbl0415.14026MR527830
- N. Jochnowitz, A study of the local components of the Hecke algebra mod , Trans. Amer. Math. Soc. 270 (1982), 253-267 Zbl0536.10021MR642340
- H. Klingen, Introductory lectures on Siegel modular forms, 20 (1990), Cambridge University Press Zbl0693.10023MR1046630
- J. Lehner, Further congruence properties of the Fourier coefficients of the modular invariant , Amer. J. Math. 71 (1949), 373-386 Zbl0032.15902MR27802
- H. Maass, Über eine Spezialschar von Modulformen zweiten Grades, Invent. Math. 52 (1979), 95-104 Zbl0386.10013MR532746
- S. Nagaoka, Note on mod Siegel modular forms, Math. Z. 235 (2000), 405-420 Zbl0982.11022MR1795515
- S. Nagaoka, Note on mod Siegel modular forms II, Math. Z. 251 (2005), 821-826 Zbl1088.11033MR2190144
- K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and -series, 102 (2004), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl1119.11026MR2020489
- C. Poor, D. Yuen, Paramodular cusp forms
- C. Poor, D. Yuen, Linear dependence among Siegel modular forms, Math. Ann. 318 (2000), 205-234 Zbl0972.11035MR1795560
- O. Richter, On congruences of Jacobi forms, Proc. Amer. Math. Soc. 136 (2008), 2729-2734 Zbl1204.11085MR2399034
- O. Richter, The action of the heat operator on Jacobi forms, Proc. Amer. Math. Soc. 137 (2009), 869-875 Zbl1214.11061MR2457425
- J-P. Serre, Formes modulaires et fonctions zeta -adiques, in: Modular functions of one variable III, (1973), 191-268, Springer Zbl0277.12014MR404145
- A. Sofer, -adic aspects of Jacobi forms, J. Number Theory 63 (1997), 191-202 Zbl0878.11021MR1443756
- H. P. F. Swinnerton-Dyer, On -adic representations and congruences for coefficients of modular forms, in: Modular functions of one variable III, (1973), 1-55, Springer Zbl0267.10032MR406931
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.