Congruences for Siegel modular forms

Dohoon Choi[1]; YoungJu Choie[2]; Olav K. Richter[3]

  • [1] Korea Aerospace University School of Liberal Arts and Sciences Goyang 412-791 (South Korea)
  • [2] Pohang University of Science and Technology Department of Mathematics Pohang 790-784 (South Korea)
  • [3] University of North Texas Department of Mathematics Denton, TX 76203 (USA)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 4, page 1455-1466
  • ISSN: 0373-0956

Abstract

top
We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree 2 . In particular, we determine when an analog of Atkin’s U ( p ) -operator applied to a Siegel modular form of degree 2 is nonzero modulo a prime p . Furthermore, we discuss explicit examples to illustrate our results.

How to cite

top

Choi, Dohoon, Choie, YoungJu, and Richter, Olav K.. "Congruences for Siegel modular forms." Annales de l’institut Fourier 61.4 (2011): 1455-1466. <http://eudml.org/doc/219668>.

@article{Choi2011,
abstract = {We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree $2$. In particular, we determine when an analog of Atkin’s $U(p)$-operator applied to a Siegel modular form of degree $2$ is nonzero modulo a prime $p$. Furthermore, we discuss explicit examples to illustrate our results.},
affiliation = {Korea Aerospace University School of Liberal Arts and Sciences Goyang 412-791 (South Korea); Pohang University of Science and Technology Department of Mathematics Pohang 790-784 (South Korea); University of North Texas Department of Mathematics Denton, TX 76203 (USA)},
author = {Choi, Dohoon, Choie, YoungJu, Richter, Olav K.},
journal = {Annales de l’institut Fourier},
keywords = {Congruences; Siegel modular forms; congruences},
language = {eng},
number = {4},
pages = {1455-1466},
publisher = {Association des Annales de l’institut Fourier},
title = {Congruences for Siegel modular forms},
url = {http://eudml.org/doc/219668},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Choi, Dohoon
AU - Choie, YoungJu
AU - Richter, Olav K.
TI - Congruences for Siegel modular forms
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1455
EP - 1466
AB - We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree $2$. In particular, we determine when an analog of Atkin’s $U(p)$-operator applied to a Siegel modular form of degree $2$ is nonzero modulo a prime $p$. Furthermore, we discuss explicit examples to illustrate our results.
LA - eng
KW - Congruences; Siegel modular forms; congruences
UR - http://eudml.org/doc/219668
ER -

References

top
  1. S. Ahlgren, K. Ono, Arithmetic of singular moduli and class polynomials, Compos. Math. 141 (2005), 293-312 Zbl1133.11036MR2134268
  2. S. Böcherer, S. Nagaoka, On mod p properties of Siegel modular forms, Math. Ann. 338 (2007), 421-433 Zbl1171.11029MR2302069
  3. Y. Choie, W. Eholzer, Rankin-Cohen operators for Jacobi and Siegel forms, J. Number Theory 68 (1998), 160-177 Zbl0958.11032MR1605899
  4. M. Eichler, D. Zagier, The theory of Jacobi forms, (1985), Birkhäuser, Boston Zbl0554.10018MR781735
  5. N. Elkies, K. Ono, T. Yang, Reduction of CM elliptic curves and modular function congruences, Internat. Math. Res. Notices (2005), 2695-2707 Zbl1166.11323MR2181309
  6. E. Freitag, Siegelsche Modulfunktionen, (1983), Springer, Berlin, Heidelberg, New York Zbl0498.10016MR871067
  7. P. Guerzhoy, On p -adic families of Siegel cusp forms in the Maaß Spezialschar, J. Reine Angew. Math. 523 (2000), 103-112 Zbl0944.11015MR1762957
  8. J. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175-200 Zbl0133.33301MR141643
  9. J. Igusa, On the ring of modular forms of degree two over Z , Amer. J. Math. 101 (1979), 149-183 Zbl0415.14026MR527830
  10. N. Jochnowitz, A study of the local components of the Hecke algebra mod l , Trans. Amer. Math. Soc. 270 (1982), 253-267 Zbl0536.10021MR642340
  11. H. Klingen, Introductory lectures on Siegel modular forms, 20 (1990), Cambridge University Press Zbl0693.10023MR1046630
  12. J. Lehner, Further congruence properties of the Fourier coefficients of the modular invariant j ( τ ) , Amer. J. Math. 71 (1949), 373-386 Zbl0032.15902MR27802
  13. H. Maass, Über eine Spezialschar von Modulformen zweiten Grades, Invent. Math. 52 (1979), 95-104 Zbl0386.10013MR532746
  14. S. Nagaoka, Note on mod p Siegel modular forms, Math. Z. 235 (2000), 405-420 Zbl0982.11022MR1795515
  15. S. Nagaoka, Note on mod p Siegel modular forms II, Math. Z. 251 (2005), 821-826 Zbl1088.11033MR2190144
  16. K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and q -series, 102 (2004), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl1119.11026MR2020489
  17. C. Poor, D. Yuen, Paramodular cusp forms 
  18. C. Poor, D. Yuen, Linear dependence among Siegel modular forms, Math. Ann. 318 (2000), 205-234 Zbl0972.11035MR1795560
  19. O. Richter, On congruences of Jacobi forms, Proc. Amer. Math. Soc. 136 (2008), 2729-2734 Zbl1204.11085MR2399034
  20. O. Richter, The action of the heat operator on Jacobi forms, Proc. Amer. Math. Soc. 137 (2009), 869-875 Zbl1214.11061MR2457425
  21. J-P. Serre, Formes modulaires et fonctions zeta p -adiques, in: Modular functions of one variable III, (1973), 191-268, Springer Zbl0277.12014MR404145
  22. A. Sofer, p -adic aspects of Jacobi forms, J. Number Theory 63 (1997), 191-202 Zbl0878.11021MR1443756
  23. H. P. F. Swinnerton-Dyer, On l -adic representations and congruences for coefficients of modular forms, in: Modular functions of one variable III, (1973), 1-55, Springer Zbl0267.10032MR406931

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.