Global well-posedness and scattering for the mass-critical NLS
- [1] University of California, Berkeley
Journées Équations aux dérivées partielles (2011)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topHow to cite
topDodson, Benjamin. "Global well-posedness and scattering for the mass-critical NLS." Journées Équations aux dérivées partielles (2011): 1-11. <http://eudml.org/doc/219676>.
@article{Dodson2011,
affiliation = {University of California, Berkeley},
author = {Dodson, Benjamin},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Global well-posedness and scattering for the mass-critical NLS},
url = {http://eudml.org/doc/219676},
year = {2011},
}
TY - JOUR
AU - Dodson, Benjamin
TI - Global well-posedness and scattering for the mass-critical NLS
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 11
LA - eng
UR - http://eudml.org/doc/219676
ER -
References
top- J. Bourgain “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations” Geom. Funct. Anal.3 (1993): 2, 107 – 156. Zbl0787.35097MR1209299
- J. Bourgain “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation” Geom. Funct. Anal.3 (1993): 3, 209–262. Zbl0787.35098MR1215780
- J. Bourgain. “Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity.” International Mathematical Research Notices, 5 (1998):253 – 283. Zbl0917.35126MR1616917
- J. Bourgain. “Global Solutions of Nonlinear Schrödinger Equations” American Mathematical Society Colloquium Publications, 1999. Zbl0933.35178MR1691575
- H. Berestycki and P.L. Lions, two authors Existence d’ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B, 288 no. 7 (1979), A395 - A398. Zbl0397.35024MR552061
- T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in , Manuscripta Math., 61 (1988), 477–494. Zbl0696.35153MR952091
- T. Cazenave and F. B. Weissler, two authors "The Cauchy problem for the critical nonlinear Schrödinger equation in ", Nonlinear Anal., 14 (1990), 807–836. Zbl0706.35127MR1055532
- J. Colliander, M. Grillakis, and N. Tzirakis. “Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on .” International Mathematics Research Notices. IMRN, 23 (2007): 90 - 119. Zbl1142.35085
- J. Colliander, M. Grillakis, and N. Tzirakis. “Tensor products and correlation estimates with applications to nonlinear Schrödinger equations” Communications on Pure and Applied Mathematics, 62 no. 7 (2009) : 920 - 968 Zbl1185.35250MR2527809
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. “Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation.” Mathematical Research Letters, 9 (2002):659 – 682. Zbl1152.35491MR1906069
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. “Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on ” Communications on pure and applied mathematics, 21 (2004) : 987 - 1014 Zbl1060.35131MR2053757
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. “Resonant decompositions and the I-method for cubic nonlinear Schrödinger equation on .” Discrete and Continuous Dynamical Systems A, 21 (2007):665 – 686. Zbl1147.35095MR2399431
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. “Global existence and scattering for the energy - critical nonlinear Schrödinger equation on ” Annals of Mathematics. Second Series, 167 (2008) : 767 - 865 Zbl1178.35345MR2415387
- J. Colliander and T. Roy, Bootstrapped Morawetz Estimates and Resonant Decomposition f or Low Regularity Global solutions of Cubic NLS on , preprint, arXiv:0811.1803, Zbl1252.35248MR2754279
- B. Dodson, Global well - posedness and scattering for the defocusing - critical nonlinear Schrödinger equation when , preprint, arXiv:0912.2467v1, Zbl1236.35163MR2869023
- B. Dodson, Global well - posedness and scattering for the defocusing - critical nonlinear Schrödinger equation when , preprint, arXiv:1010.0040v2, Zbl06575383
- B. Dodson, Global well - posedness and scattering for the defocusing - critical nonlinear Schrödinger equation when , preprint, arXiv:1006.1375v2, Zbl1236.35163
- B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, preprint, arXiv:1104.1114v2, Zbl1331.35316
- P. Germain, N. Masmoudi, and J. Shatah, Global solutions for 2D quadratic Schrödinger equations, preprint, arXiv:1001.5158v1, Zbl1244.35134
- M. Hadac and S. Herr and H. Koch “Well-posedness and scattering for the KP-II equation in a critical space” Ann. Inst. H. Poincaré Anal. Non Linéaire26 (2009): 3, 917–941. Zbl1169.35372MR2526409
- C. Kenig and F. Merle “Global well-posedness, scattering, and blow-up for the energy-critical, focusing nonlinear Schrödinger equation in the radial case,” Inventiones Mathematicae166 (2006): 3, 645–675. Zbl1115.35125MR2257393
- C. Kenig and F. Merle “Scattering for bounded solutions to the cubic, defocusing NLS in 3 dimensions,” Transactions of the American Mathematical Society362 (2010): 4, 1937 – 1962. Zbl1188.35180MR2574882
- M. Keel and T. Tao “Endpoint Strichartz Estimates” American Journal of Mathematics120 (1998): 4 - 6, 945 – 957. Zbl0922.35028MR1646048
- R. Killip, T. Tao, and M. Visan “The cubic nonlinear Schrödinger equation in two dimensions with radial data" Journal of the European Mathematical Society , to appear. Zbl1187.35237
- R. Killip and M. Visan “Nonlinear Schrodinger Equations at Critical Regularity" Unpublished lecture notes , Clay Lecture Notes (2009): http://www.math.ucla.edu/ visan/lecturenotes.html. Zbl1298.35195
- R. Killip, M. Visan, and X. Zhang “The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher" Annals in PDE , textbf1, no. 2 (2008) 229 - 266 Zbl1171.35111MR2472890
- H. Koch and D. Tataru “Dispersive estimates for principally normal pseudodifferential operators” Communications on Pure and Applied Mathematics58 no. 2 (2005): 217 - 284 Zbl1078.35143MR2094851
- H. Koch and D. Tataru “A priori bounds for the 1D cubic NLS in negative Sobolev spaces” Int. Math. Res. Not. IMRN16 (2007): Art. ID rnm053, 36. Zbl1169.35055MR2353092
- H. Koch and D. Tataru, Energy and local energy bounds for the 1-D cubic NLS equation in , preprint, arXiv:1012.0148, Zbl1280.35137
- M. K. Kwong, Uniqueness of positive solutions of in , Archive for Rational Mechanics and Analysis 105 no. 3 (1989), 243 - 266. Zbl0676.35032MR969899
- T. Ozawa and Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrödinger equations, Differential Integral Equations, 11 no. 2 (1998), 201–222. Zbl1008.35070MR1741843
- F. Planchon and L. Vega “Bilinear virial identities and applications” Annales Scientifiques de l’École Normale Supérieure42, no. 2 (2009): 261 - 290. Zbl1192.35166MR2518079
- T. Tao, “Nonlinear Dispersive Equations," Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Zbl1106.35001MR2233925
- T. Tao and A. Vargas, A bilinear approach to cone multipliers. I. Restriction estimates, Geom. Funct. Anal., 10 no. 1 (2000), 185–215. Zbl0949.42012MR1748920
- T. Tao, M. Visan, and X. Zhang. “The nonlinear Schrödinger equation with combined power-type nonlinearities.” Comm. Partial Differential Equations, 32 no. 7-9 (2007) :1281–1343. Zbl1187.35245MR2354495
- T. Tao, M. Visan, and X. Zhang. “Minimal-mass blowup solutions of the mass-critical NLS.” Forum Mathematicum, 20 no. 5 (2008) : 881 - 919. Zbl1154.35085MR2445122
- T. Tao, M. Visan, and X. Zhang. “Global well-posedness and scattering for the defocusing mass - critical nonlinear Schrödinger equation for radial data in high dimensions.” Duke Mathematical Journal, 140 no. 1 (2007) : 165 - 202. Zbl1187.35246MR2355070
- M. E. Taylor, “Pseudodifferential Operators and Nonlinear PDE," Birkhäuser, Boston, 1991. Zbl0746.35062MR1121019
- M. E. Taylor, “Partial Differential Equations I - III," Springer-Verlag, New York, 1996. Zbl1206.35004MR1395148
- M. E. Taylor “Short time behavior of solutions to nonlinear Schrödinger equations in one and two space dimensions" Comm. Partial Differential Equations31 (2006): 955 - 980. Zbl1106.35104MR2233047
- M. E. Taylor, “Tools for PDE" American Mathematical Society, Mathematical Surveys and Monographs31 Providence, RI, 2000. Zbl0963.35211MR1766415
- M. Visan “The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions" Duke Mathematical Journal138 (2007): 281 - 374. Zbl1131.35081MR2318286
- M. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates" Communications in Mathematical Physics87 no. 4 (1982/83): 567 - 576. Zbl0527.35023MR691044
- M. Weinstein, “The nonlinear Schrödinger equation – singularity formation, stability and dispersion" The connection between infinite - dimensional and finite - dimensional dynamical systems (Boulder CO) 99 (1989): 213 - 232. Zbl0703.35159MR1034501
- K. Yosida, “Functional Analysis" Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 123, 6th Edition Springer - Verlag, Berlin, 1980. Zbl0435.46002MR617913
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.