Fully Invariant Subgroups of n -Summable Primary Abelian Groups

Peter Danchev[1]

  • [1] Department of Mathematics Plovdiv State University 24 Tzar Assen St. Plovdiv 4000 BGR

Annales mathématiques Blaise Pascal (2011)

  • Volume: 18, Issue: 2, page 245-250
  • ISSN: 1259-1734

Abstract

top
We present a number of results concerning fully invariant subgroups of n -summable groups.

How to cite

top

Danchev, Peter. "Fully Invariant Subgroups of $n$-Summable Primary Abelian Groups." Annales mathématiques Blaise Pascal 18.2 (2011): 245-250. <http://eudml.org/doc/219684>.

@article{Danchev2011,
abstract = {We present a number of results concerning fully invariant subgroups of $n$-summable groups.},
affiliation = {Department of Mathematics Plovdiv State University 24 Tzar Assen St. Plovdiv 4000 BGR},
author = {Danchev, Peter},
journal = {Annales mathématiques Blaise Pascal},
keywords = {$n$-summable groups; fully invariant subgroups; quotients; $\sigma $-summable groups; -summable groups; -summable groups; primary Abelian groups},
language = {eng},
month = {7},
number = {2},
pages = {245-250},
publisher = {Annales mathématiques Blaise Pascal},
title = {Fully Invariant Subgroups of $n$-Summable Primary Abelian Groups},
url = {http://eudml.org/doc/219684},
volume = {18},
year = {2011},
}

TY - JOUR
AU - Danchev, Peter
TI - Fully Invariant Subgroups of $n$-Summable Primary Abelian Groups
JO - Annales mathématiques Blaise Pascal
DA - 2011/7//
PB - Annales mathématiques Blaise Pascal
VL - 18
IS - 2
SP - 245
EP - 250
AB - We present a number of results concerning fully invariant subgroups of $n$-summable groups.
LA - eng
KW - $n$-summable groups; fully invariant subgroups; quotients; $\sigma $-summable groups; -summable groups; -summable groups; primary Abelian groups
UR - http://eudml.org/doc/219684
ER -

References

top
  1. P. Danchev, Commutative group algebras of summable p -groups, Commun. Algebra 35 (2007), 1275-1289 Zbl1122.20003MR2313667
  2. P. Danchev, Notes on λ -large subgroups of primary abelian groups and free valuated vector spaces, Bull. Allahabad Math. Soc. 23 (2008), 149-154 Zbl1163.20034MR2405840
  3. P. Danchev, On λ -large subgroups of n -summable C ω 1 -groups, SUT J. Math. 44 (2008), 33-37 Zbl1158.20325MR2450134
  4. P. Danchev, On some fully invariant subgroups of summable groups, Ann. Math. Blaise Pascal 15 (2008), 147-152 Zbl1155.20053MR2468040
  5. P. Danchev, On λ -large subgroups of summable C Ω -groups, Algebra Colloq. 16 (2009), 649-652 Zbl1176.20055MR2547092
  6. P. Danchev, P. Keef, Generalized Wallace theorems, Math. Scand. 104 (2009), 33-50 Zbl1169.20029MR2498370
  7. P. Danchev, P. Keef, n -Summable valuated p n -socles and primary abelian groups, Commun. Algebra 38 (2010), 3137-3153 Zbl1210.20049MR2724211
  8. L. Fucs, Infinite Abelian Groups I and II, (1970 and 1973), Academic Press, New York and London Zbl0257.20035
  9. I. Kaplansky, Infinite Abelian Groups, (1954 and 1969), University of Michigan Press, Ann Arbor Zbl0194.04402MR233887
  10. R. Linton, On fully invariant subgroups of primary abelian groups, Mich. Math. J. 22 (1975), 281-284 Zbl0308.20041MR396788
  11. R. Linton, λ -large subgroups of C λ -groups, Pac. J. Math. 75 (1978), 477-485 Zbl0392.20035MR507070
  12. R. Linton, C. Megibben, Extensions of totally projective groups, Proc. Amer. Math. Soc. 64 (1977), 35-38 Zbl0386.20028MR450425
  13. R. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182-212 Zbl0173.02401MR218452

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.