The lower bound of the Ricci curvature that yields an infinite discrete spectrum of the Laplacian

Hironori Kumura[1]

  • [1] Shizuoka University Department of Mathematics Ohya, Shizuoka 422-8529 (Japan)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 4, page 1557-1572
  • ISSN: 0373-0956

Abstract

top
This paper discusses the question whether the discrete spectrum of the Laplace-Beltrami operator is infinite or finite. The borderline-behavior of the curvatures for this problem will be completely determined.

How to cite

top

Kumura, Hironori. "The lower bound of the Ricci curvature that yields an infinite discrete spectrum of the Laplacian." Annales de l’institut Fourier 61.4 (2011): 1557-1572. <http://eudml.org/doc/219694>.

@article{Kumura2011,
abstract = {This paper discusses the question whether the discrete spectrum of the Laplace-Beltrami operator is infinite or finite. The borderline-behavior of the curvatures for this problem will be completely determined.},
affiliation = {Shizuoka University Department of Mathematics Ohya, Shizuoka 422-8529 (Japan)},
author = {Kumura, Hironori},
journal = {Annales de l’institut Fourier},
keywords = {Laplace-Beltrami operator; discrete spectrum; Ricci curvature},
language = {eng},
number = {4},
pages = {1557-1572},
publisher = {Association des Annales de l’institut Fourier},
title = {The lower bound of the Ricci curvature that yields an infinite discrete spectrum of the Laplacian},
url = {http://eudml.org/doc/219694},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Kumura, Hironori
TI - The lower bound of the Ricci curvature that yields an infinite discrete spectrum of the Laplacian
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1557
EP - 1572
AB - This paper discusses the question whether the discrete spectrum of the Laplace-Beltrami operator is infinite or finite. The borderline-behavior of the curvatures for this problem will be completely determined.
LA - eng
KW - Laplace-Beltrami operator; discrete spectrum; Ricci curvature
UR - http://eudml.org/doc/219694
ER -

References

top
  1. Kazuo Akutagawa, Hironori Kumura, The uncertainty principle lemma under gravity and the discrete spectrum of Schrödinger operators Zbl1279.58014
  2. Robert Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z. 178 (1981), 501-508 Zbl0458.58024MR638814
  3. Isaac Chavel, Eigenvalues in Riemannian Geometry, 115 (1984), Academic Press Inc. Zbl0551.53001MR768584
  4. Shiu-Yuen Cheng, Eigenvalue comparison theorems and its geometric application, Math. Z 143 (1982), 289-297 Zbl0329.53035MR378001
  5. Richard Courant, David Hilbert, Methods of Mathematical Physics, (Vol. I ,1953; Vol. II, 1962), Interscience Publishers, Inc.,(a division of John Wiley & Sons), New York-London Zbl0729.00007
  6. Harold Donnelly, On the essential spectrum of a complete Riemannian manifold, Topology 20 (1981), 1-14 Zbl0463.53027MR592568
  7. Robert E. Greene, Hung-Hsi Wu, Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math. 699, (1979), Springer-Verlag, Berlin Zbl0414.53043MR521983
  8. Atsushi Kasue, Applications of Laplacian and Hessian comparison theorems, Adv. Stud. Pure Math., 3 (1982), 333-386, ShiohamaKatsuhiroK., Tokyo Zbl0578.53029MR758660
  9. Werner Kirsch, Barry Simon, Corrections to the classical behavior of the number of bound states of Schrödinger operators, Ann. Phys. 183 (1988), 122-130 Zbl0646.35019MR952875
  10. Heinz Prüfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), 499-518 Zbl52.0455.01MR1512291
  11. Michael Reed, Barry Simon, Methods of Modern Mathematical Physics, Vol. II, (1972), Academic Press, New York Zbl0242.46001MR493419
  12. Michael E. Taylor, Partial Differential Equations I, (Applied Math. Sci. 116), (1996), Springer-Verlag, New York Zbl0869.35003MR1395148

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.