A differential Puiseux theorem in generalized series fields of finite rank

Mickaël Matusinski[1]

  • [1] Universität Konstanz, Fachbereich Mathematik und Statistik, 78457 Konstanz, Allemagne.

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 2, page 247-293
  • ISSN: 0240-2963

Abstract

top
We study differential equations F ( y , ... , y ( n ) ) = 0 where F is a formal series in y , y , ... , y ( n ) with coefficients in some field of generalized power series 𝕂 r with finite rank r * . Our purpose is to express the support Supp y 0 , i.e. the set of exponents, of the elements y 0 𝕂 r that are solutions, in terms of the supports of the coefficients of the equation, namely Supp F .

How to cite

top

Matusinski, Mickaël. "A differential Puiseux theorem in generalized series fields of finite rank." Annales de la faculté des sciences de Toulouse Mathématiques 20.2 (2011): 247-293. <http://eudml.org/doc/219705>.

@article{Matusinski2011,
abstract = {We study differential equations $F(y,\ldots ,y^\{(n)\})=0$ where $F$ is a formal series in $y,y^\{\prime\},\ldots ,y^\{(n)\}$ with coefficients in some field of generalized power series$\{\mathbb\{K\}\}_r$ with finite rank $r\in \{\mathbb\{N\}\}^*$. Our purpose is to express the support $\textrm\{Supp\}\ y_0$, i.e. the set of exponents, of the elements $y_0\in \{\mathbb\{K\}\}_r$ that are solutions, in terms of the supports of the coefficients of the equation, namely $\textrm\{Supp\}\ F$.},
affiliation = {Universität Konstanz, Fachbereich Mathematik und Statistik, 78457 Konstanz, Allemagne.},
author = {Matusinski, Mickaël},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {differential Puiseux theorem; generalized series fields; finite rank},
language = {eng},
month = {4},
number = {2},
pages = {247-293},
publisher = {Université Paul Sabatier, Toulouse},
title = {A differential Puiseux theorem in generalized series fields of finite rank},
url = {http://eudml.org/doc/219705},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Matusinski, Mickaël
TI - A differential Puiseux theorem in generalized series fields of finite rank
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 2
SP - 247
EP - 293
AB - We study differential equations $F(y,\ldots ,y^{(n)})=0$ where $F$ is a formal series in $y,y^{\prime},\ldots ,y^{(n)}$ with coefficients in some field of generalized power series${\mathbb{K}}_r$ with finite rank $r\in {\mathbb{N}}^*$. Our purpose is to express the support $\textrm{Supp}\ y_0$, i.e. the set of exponents, of the elements $y_0\in {\mathbb{K}}_r$ that are solutions, in terms of the supports of the coefficients of the equation, namely $\textrm{Supp}\ F$.
LA - eng
KW - differential Puiseux theorem; generalized series fields; finite rank
UR - http://eudml.org/doc/219705
ER -

References

top
  1. Aschenbrenner (M.), van den Dries (L.).— Asymptotic differential algebra, Analyzable functions, applications, Contemp. Math., vol. 373, AMS, Providence, RI, p. 49-85, (2005). Zbl1087.12002MR2130825
  2. Bourbaki (N.).— Éléments de mathématique. Théorie des ensembles, Hermann, Paris (1970). Zbl0282.04001
  3. Cano (J.).— On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations, Analysis 13, no. 1-2, 103-119 (1993). Zbl0793.34009MR1245746
  4. Cano (F.), Moussu (R.), Rolin (J.-P.).— Non-oscillating integral curves, valuations, J. Reine Angew. Math. 582, 107-141 (2005). Zbl1078.32020MR2139713
  5. Écalle (J.).— Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris (1992). MR1399559
  6. Fuchs (L.).— Partially ordered algebraic systems, Pergamon Press, Oxford (1963). Zbl0137.02001MR171864
  7. Grigoriev (D. Y.), Singer (M. F.).— Solving ordinary differential equations in terms of series with real exponents, Transactions Amer. Math. Soc. 327, no. 1, p. 329-351 (1991). Zbl0758.12004MR1012519
  8. Hahn (H.).— Über die nichtarchimedischen Größensystem, Sitzungsberichte der Kaiserlichen Akad. der Wissens., Math. - Naturwissens. Klasse (Wien) 116, no. Abteilung IIa, p. 601-655 (1907). Zbl38.0501.01
  9. Ince (E. L.).— Ordinary Differential Equations, Dover Publications, New-York (1944). Zbl0063.02971MR10757
  10. Fine (H. B.).— On the functions defined by differential equations, with an extension of the Puiseux polygon construction to these equations, Amer. J. Math. 11, no. 4, p. 317-328 (1889). Zbl21.0302.01MR1505516
  11. van der Hoeven (J.).— Asymptotique automatique, Thèse, Université Paris VII, Paris (1997). Zbl0956.68162MR1458614
  12. van der Hoeven (J.).— Transseries, real differential algebra, Lecture Notes in Mathematics, vol. 1888, Springer-Verlag, Berlin (2006). Zbl1128.12008MR2262194
  13. Krantz (S. G.), Parks (H. R.).— A primer of real analytic functions, 2nd ed., Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston Inc., Boston, mA (2002). Zbl0767.26001MR1916029
  14. Kuhlmann (S.).— Ordered exponential fields, Fields Institute monographs, vol. 12, American mathematical Society, Providence, RI (2000). Zbl0989.12003MR1760173
  15. Matusinski (M.).— Équations différentielles à coefficients dans des corps de séries généralisés, Thèse, Université de Bourgogne (2007). 
  16. Kuhlmann (S.), Matusinski (M.).— Hardy type derivations in generalized series fields., preprint 22 pages (2010). 
  17. Matusinski (M.), Rolin (J.-P.).— Generalized power series solutions of sub-analytic differential equations, C. R. Math. Acad. Sci. Paris 342, no. 2, p. 99-102 (2006). Zbl1090.34506MR2193654
  18. Rosenlicht (M.).— Differential valuations, Pacific J. Math. 86, no. 1, p. 301-319 (1980). Zbl0401.12024MR586879
  19. Rosenlicht (M.).— On the value group of a differential valuation. II, Amer. J. Math. 103, no. 5, p. 977-996 (1981). Zbl0474.12020MR630775
  20. Rosenlicht (M.).— The rank of a Hardy field, Trans. Amer. Math. Soc. 280, no. 2, p. 659-671 (1983). Zbl0536.12015MR716843

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.