A differential Puiseux theorem in generalized series fields of finite rank
- [1] Universität Konstanz, Fachbereich Mathematik und Statistik, 78457 Konstanz, Allemagne.
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 2, page 247-293
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMatusinski, Mickaël. "A differential Puiseux theorem in generalized series fields of finite rank." Annales de la faculté des sciences de Toulouse Mathématiques 20.2 (2011): 247-293. <http://eudml.org/doc/219705>.
@article{Matusinski2011,
abstract = {We study differential equations $F(y,\ldots ,y^\{(n)\})=0$ where $F$ is a formal series in $y,y^\{\prime\},\ldots ,y^\{(n)\}$ with coefficients in some field of generalized power series$\{\mathbb\{K\}\}_r$ with finite rank $r\in \{\mathbb\{N\}\}^*$. Our purpose is to express the support $\textrm\{Supp\}\ y_0$, i.e. the set of exponents, of the elements $y_0\in \{\mathbb\{K\}\}_r$ that are solutions, in terms of the supports of the coefficients of the equation, namely $\textrm\{Supp\}\ F$.},
affiliation = {Universität Konstanz, Fachbereich Mathematik und Statistik, 78457 Konstanz, Allemagne.},
author = {Matusinski, Mickaël},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {differential Puiseux theorem; generalized series fields; finite rank},
language = {eng},
month = {4},
number = {2},
pages = {247-293},
publisher = {Université Paul Sabatier, Toulouse},
title = {A differential Puiseux theorem in generalized series fields of finite rank},
url = {http://eudml.org/doc/219705},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Matusinski, Mickaël
TI - A differential Puiseux theorem in generalized series fields of finite rank
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 2
SP - 247
EP - 293
AB - We study differential equations $F(y,\ldots ,y^{(n)})=0$ where $F$ is a formal series in $y,y^{\prime},\ldots ,y^{(n)}$ with coefficients in some field of generalized power series${\mathbb{K}}_r$ with finite rank $r\in {\mathbb{N}}^*$. Our purpose is to express the support $\textrm{Supp}\ y_0$, i.e. the set of exponents, of the elements $y_0\in {\mathbb{K}}_r$ that are solutions, in terms of the supports of the coefficients of the equation, namely $\textrm{Supp}\ F$.
LA - eng
KW - differential Puiseux theorem; generalized series fields; finite rank
UR - http://eudml.org/doc/219705
ER -
References
top- Aschenbrenner (M.), van den Dries (L.).— Asymptotic differential algebra, Analyzable functions, applications, Contemp. Math., vol. 373, AMS, Providence, RI, p. 49-85, (2005). Zbl1087.12002MR2130825
- Bourbaki (N.).— Éléments de mathématique. Théorie des ensembles, Hermann, Paris (1970). Zbl0282.04001
- Cano (J.).— On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations, Analysis 13, no. 1-2, 103-119 (1993). Zbl0793.34009MR1245746
- Cano (F.), Moussu (R.), Rolin (J.-P.).— Non-oscillating integral curves, valuations, J. Reine Angew. Math. 582, 107-141 (2005). Zbl1078.32020MR2139713
- Écalle (J.).— Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris (1992). MR1399559
- Fuchs (L.).— Partially ordered algebraic systems, Pergamon Press, Oxford (1963). Zbl0137.02001MR171864
- Grigoriev (D. Y.), Singer (M. F.).— Solving ordinary differential equations in terms of series with real exponents, Transactions Amer. Math. Soc. 327, no. 1, p. 329-351 (1991). Zbl0758.12004MR1012519
- Hahn (H.).— Über die nichtarchimedischen Größensystem, Sitzungsberichte der Kaiserlichen Akad. der Wissens., Math. - Naturwissens. Klasse (Wien) 116, no. Abteilung IIa, p. 601-655 (1907). Zbl38.0501.01
- Ince (E. L.).— Ordinary Differential Equations, Dover Publications, New-York (1944). Zbl0063.02971MR10757
- Fine (H. B.).— On the functions defined by differential equations, with an extension of the Puiseux polygon construction to these equations, Amer. J. Math. 11, no. 4, p. 317-328 (1889). Zbl21.0302.01MR1505516
- van der Hoeven (J.).— Asymptotique automatique, Thèse, Université Paris VII, Paris (1997). Zbl0956.68162MR1458614
- van der Hoeven (J.).— Transseries, real differential algebra, Lecture Notes in Mathematics, vol. 1888, Springer-Verlag, Berlin (2006). Zbl1128.12008MR2262194
- Krantz (S. G.), Parks (H. R.).— A primer of real analytic functions, 2nd ed., Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston Inc., Boston, mA (2002). Zbl0767.26001MR1916029
- Kuhlmann (S.).— Ordered exponential fields, Fields Institute monographs, vol. 12, American mathematical Society, Providence, RI (2000). Zbl0989.12003MR1760173
- Matusinski (M.).— Équations différentielles à coefficients dans des corps de séries généralisés, Thèse, Université de Bourgogne (2007).
- Kuhlmann (S.), Matusinski (M.).— Hardy type derivations in generalized series fields., preprint 22 pages (2010).
- Matusinski (M.), Rolin (J.-P.).— Generalized power series solutions of sub-analytic differential equations, C. R. Math. Acad. Sci. Paris 342, no. 2, p. 99-102 (2006). Zbl1090.34506MR2193654
- Rosenlicht (M.).— Differential valuations, Pacific J. Math. 86, no. 1, p. 301-319 (1980). Zbl0401.12024MR586879
- Rosenlicht (M.).— On the value group of a differential valuation. II, Amer. J. Math. 103, no. 5, p. 977-996 (1981). Zbl0474.12020MR630775
- Rosenlicht (M.).— The rank of a Hardy field, Trans. Amer. Math. Soc. 280, no. 2, p. 659-671 (1983). Zbl0536.12015MR716843
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.