The Weil algebra and the Van Est isomorphism
Camilo Arias Abad[1]; Marius Crainic[2]
- [1] Universität Zürich Institut für Mathematik Zürich (Switzerland)
- [2] Utrecht University Department of Mathematics Utrecht (The Netherlands)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 3, page 927-970
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArias Abad, Camilo, and Crainic, Marius. "The Weil algebra and the Van Est isomorphism." Annales de l’institut Fourier 61.3 (2011): 927-970. <http://eudml.org/doc/219714>.
@article{AriasAbad2011,
abstract = {This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra $W(A)$ associated to any Lie algebroid $A$. We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual proof of the main result of [6] on the reconstructions of multiplicative forms and of a result of [21, 9] on the reconstruction of connection 1-forms. This reveals the relevance of the Weil algebra and Van Est maps to the integration and the pre-quantization of Poisson (and Dirac) manifolds.},
affiliation = {Universität Zürich Institut für Mathematik Zürich (Switzerland); Utrecht University Department of Mathematics Utrecht (The Netherlands)},
author = {Arias Abad, Camilo, Crainic, Marius},
journal = {Annales de l’institut Fourier},
keywords = {Lie algebroids; classifying spaces; equivariant cohomology; Weil algebra; Van Est isomorphism},
language = {eng},
number = {3},
pages = {927-970},
publisher = {Association des Annales de l’institut Fourier},
title = {The Weil algebra and the Van Est isomorphism},
url = {http://eudml.org/doc/219714},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Arias Abad, Camilo
AU - Crainic, Marius
TI - The Weil algebra and the Van Est isomorphism
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 927
EP - 970
AB - This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra $W(A)$ associated to any Lie algebroid $A$. We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual proof of the main result of [6] on the reconstructions of multiplicative forms and of a result of [21, 9] on the reconstruction of connection 1-forms. This reveals the relevance of the Weil algebra and Van Est maps to the integration and the pre-quantization of Poisson (and Dirac) manifolds.
LA - eng
KW - Lie algebroids; classifying spaces; equivariant cohomology; Weil algebra; Van Est isomorphism
UR - http://eudml.org/doc/219714
ER -
References
top- C. Arias Abad, M. Crainic, Representations up to homotopy and Bott’s spectral sequence for Lie groupoids Zbl1284.55018
- C. Arias Abad, M. Crainic, Representations up to homotopy of Lie algebroids Zbl1238.58010
- Nicole Berline, Ezra Getzler, Michèle Vergne, Heat kernels and Dirac operators, (2004), Springer-Verlag, Berlin Zbl1037.58015MR2273508
- R. Bott, On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups, Advances in Math. 11 (1973), 289-303 Zbl0276.55011MR345115
- R. Bott, H. Shulman, J. Stasheff, On the de Rham theory of certain classifying spaces, Advances in Math. 20 (1976), 43-56 Zbl0342.57016MR402769
- Henrique Bursztyn, Marius Crainic, Alan Weinstein, Chenchang Zhu, Integration of twisted Dirac brackets, Duke Math. J. 123 (2004), 549-607 Zbl1067.58016MR2068969
- Henri Cartan, Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de Topologie (espaces fibrés), Bruxelles, 1950 (1951), 15-27, Georges Thone, Liège Zbl0045.30601
- Marius Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), 681-721 Zbl1041.58007MR2016690
- Marius Crainic, Prequantization and Lie brackets, J. Symplectic Geom. 2 (2004), 579-602 Zbl1095.53060MR2197220
- Marius Crainic, Rui Loja Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), 575-620 Zbl1037.22003MR1973056
- W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. = Indagationes Math. 15 (1953), 484-492, 493–504 Zbl0051.26001MR59285
- Victor W. Guillemin, Shlomo Sternberg, Supersymmetry and equivariant de Rham theory, (1999), Springer-Verlag, Berlin Zbl0934.55007MR1689252
- André Haefliger, Groupoïdes d’holonomie et classifiants, Astérisque (1984), 70-97 Zbl0562.57012
- Franz W. Kamber, Philippe Tondeur, Foliated bundles and characteristic classes, (1975), Springer-Verlag, Berlin Zbl0308.57011MR402773
- Kirill C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, 213 (2005), Cambridge University Press, Cambridge Zbl1078.58011MR2157566
- Varghese Mathai, Daniel Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85-110 Zbl0592.55015MR836726
- R. Mehta, Supergroupoids, double structures and equivariant cohomology, (2006) MR2709144
- I. Moerdijk, J. Mrčun, Introduction to foliations and Lie groupoids, 91 (2003), Cambridge University Press, Cambridge Zbl1029.58012MR2012261
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968), 105-112 Zbl0199.26404MR232393
- Alan Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), 101-104 Zbl0618.58020MR866024
- Alan Weinstein, Ping Xu, Extensions of symplectic groupoids and quantization, J. Reine Angew. Math. 417 (1991), 159-189 Zbl0722.58021MR1103911
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.