The Weil algebra and the Van Est isomorphism

Camilo Arias Abad[1]; Marius Crainic[2]

  • [1] Universität Zürich Institut für Mathematik Zürich (Switzerland)
  • [2] Utrecht University Department of Mathematics Utrecht (The Netherlands)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 3, page 927-970
  • ISSN: 0373-0956

Abstract

top
This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra W ( A ) associated to any Lie algebroid A . We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual proof of the main result of [6] on the reconstructions of multiplicative forms and of a result of [21, 9] on the reconstruction of connection 1-forms. This reveals the relevance of the Weil algebra and Van Est maps to the integration and the pre-quantization of Poisson (and Dirac) manifolds.

How to cite

top

Arias Abad, Camilo, and Crainic, Marius. "The Weil algebra and the Van Est isomorphism." Annales de l’institut Fourier 61.3 (2011): 927-970. <http://eudml.org/doc/219714>.

@article{AriasAbad2011,
abstract = {This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra $W(A)$ associated to any Lie algebroid $A$. We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual proof of the main result of [6] on the reconstructions of multiplicative forms and of a result of [21, 9] on the reconstruction of connection 1-forms. This reveals the relevance of the Weil algebra and Van Est maps to the integration and the pre-quantization of Poisson (and Dirac) manifolds.},
affiliation = {Universität Zürich Institut für Mathematik Zürich (Switzerland); Utrecht University Department of Mathematics Utrecht (The Netherlands)},
author = {Arias Abad, Camilo, Crainic, Marius},
journal = {Annales de l’institut Fourier},
keywords = {Lie algebroids; classifying spaces; equivariant cohomology; Weil algebra; Van Est isomorphism},
language = {eng},
number = {3},
pages = {927-970},
publisher = {Association des Annales de l’institut Fourier},
title = {The Weil algebra and the Van Est isomorphism},
url = {http://eudml.org/doc/219714},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Arias Abad, Camilo
AU - Crainic, Marius
TI - The Weil algebra and the Van Est isomorphism
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 927
EP - 970
AB - This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra $W(A)$ associated to any Lie algebroid $A$. We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual proof of the main result of [6] on the reconstructions of multiplicative forms and of a result of [21, 9] on the reconstruction of connection 1-forms. This reveals the relevance of the Weil algebra and Van Est maps to the integration and the pre-quantization of Poisson (and Dirac) manifolds.
LA - eng
KW - Lie algebroids; classifying spaces; equivariant cohomology; Weil algebra; Van Est isomorphism
UR - http://eudml.org/doc/219714
ER -

References

top
  1. C. Arias Abad, M. Crainic, Representations up to homotopy and Bott’s spectral sequence for Lie groupoids Zbl1284.55018
  2. C. Arias Abad, M. Crainic, Representations up to homotopy of Lie algebroids Zbl1238.58010
  3. Nicole Berline, Ezra Getzler, Michèle Vergne, Heat kernels and Dirac operators, (2004), Springer-Verlag, Berlin Zbl1037.58015MR2273508
  4. R. Bott, On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups, Advances in Math. 11 (1973), 289-303 Zbl0276.55011MR345115
  5. R. Bott, H. Shulman, J. Stasheff, On the de Rham theory of certain classifying spaces, Advances in Math. 20 (1976), 43-56 Zbl0342.57016MR402769
  6. Henrique Bursztyn, Marius Crainic, Alan Weinstein, Chenchang Zhu, Integration of twisted Dirac brackets, Duke Math. J. 123 (2004), 549-607 Zbl1067.58016MR2068969
  7. Henri Cartan, Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de Topologie (espaces fibrés), Bruxelles, 1950 (1951), 15-27, Georges Thone, Liège Zbl0045.30601
  8. Marius Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), 681-721 Zbl1041.58007MR2016690
  9. Marius Crainic, Prequantization and Lie brackets, J. Symplectic Geom. 2 (2004), 579-602 Zbl1095.53060MR2197220
  10. Marius Crainic, Rui Loja Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), 575-620 Zbl1037.22003MR1973056
  11. W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. = Indagationes Math. 15 (1953), 484-492, 493–504 Zbl0051.26001MR59285
  12. Victor W. Guillemin, Shlomo Sternberg, Supersymmetry and equivariant de Rham theory, (1999), Springer-Verlag, Berlin Zbl0934.55007MR1689252
  13. André Haefliger, Groupoïdes d’holonomie et classifiants, Astérisque (1984), 70-97 Zbl0562.57012
  14. Franz W. Kamber, Philippe Tondeur, Foliated bundles and characteristic classes, (1975), Springer-Verlag, Berlin Zbl0308.57011MR402773
  15. Kirill C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, 213 (2005), Cambridge University Press, Cambridge Zbl1078.58011MR2157566
  16. Varghese Mathai, Daniel Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85-110 Zbl0592.55015MR836726
  17. R. Mehta, Supergroupoids, double structures and equivariant cohomology, (2006) MR2709144
  18. I. Moerdijk, J. Mrčun, Introduction to foliations and Lie groupoids, 91 (2003), Cambridge University Press, Cambridge Zbl1029.58012MR2012261
  19. Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968), 105-112 Zbl0199.26404MR232393
  20. Alan Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), 101-104 Zbl0618.58020MR866024
  21. Alan Weinstein, Ping Xu, Extensions of symplectic groupoids and quantization, J. Reine Angew. Math. 417 (1991), 159-189 Zbl0722.58021MR1103911

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.