Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment
Christopher M. Wedrychowicz[1]
- [1] Indiana University South Bend Department of Mathematical Sciences 1700 Mishawaka Ave. South Bend 46634 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 2, page 401-415
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topWedrychowicz, Christopher M.. "Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment." Annales de l’institut Fourier 61.2 (2011): 401-415. <http://eudml.org/doc/219719>.
@article{Wedrychowicz2011,
abstract = {Bellow and Calderón proved that the sequence of convolution powers $ \mu _n f(x)=\sum _\{k\in \mathbb\{Z\}\}\mu ^n(k)f(T^k x)$ converges a.e, when $\mu $ is a strictly aperiodic probability measure on $\mathbb\{Z\}$ such that the expectation is zero, $ E(\mu )=0$, and the second moment is finite, $ m_2(\mu )<\infty $. In this paper we extend this result to cases where $ m_2(\mu )=\infty $.},
affiliation = {Indiana University South Bend Department of Mathematical Sciences 1700 Mishawaka Ave. South Bend 46634 (USA)},
author = {Wedrychowicz, Christopher M.},
journal = {Annales de l’institut Fourier},
keywords = {Convolution powers; a.e convergence; Fourier transform; Lipschitz class Lip$(\alpha )$; convolution powers; Lipschitz class },
language = {eng},
number = {2},
pages = {401-415},
publisher = {Association des Annales de l’institut Fourier},
title = {Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment},
url = {http://eudml.org/doc/219719},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Wedrychowicz, Christopher M.
TI - Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 401
EP - 415
AB - Bellow and Calderón proved that the sequence of convolution powers $ \mu _n f(x)=\sum _{k\in \mathbb{Z}}\mu ^n(k)f(T^k x)$ converges a.e, when $\mu $ is a strictly aperiodic probability measure on $\mathbb{Z}$ such that the expectation is zero, $ E(\mu )=0$, and the second moment is finite, $ m_2(\mu )<\infty $. In this paper we extend this result to cases where $ m_2(\mu )=\infty $.
LA - eng
KW - Convolution powers; a.e convergence; Fourier transform; Lipschitz class Lip$(\alpha )$; convolution powers; Lipschitz class
UR - http://eudml.org/doc/219719
ER -
References
top- Alexandra Bellow, Alberto P. Calderón, A weak-type inequality for convolution products, Harmonic analysis and partial differential equations (Chicago, IL, 1996) (1999), 41-48, Univ. Chicago Press, Chicago, IL Zbl0960.28011MR1743854
- Alexandra Bellow, Roger L. Jones, Joseph Rosenblatt, Almost everywhere convergence of weighted averages, Math. Ann. 293 (1992), 399-426 Zbl0736.28008MR1170516
- Alexandra Bellow, Roger L. Jones, Joseph Rosenblatt, Almost everywhere convergence of convolution powers, Ergodic Theory Dynam. Systems 14 (1994), 415-432 Zbl0818.28005MR1293401
- Shaul R. Foguel, On iterates of convolutions, Proc. Amer. Math. Soc. 47 (1975), 368-370 Zbl0299.43004MR374816
- V. Losert, A remark on almost everywhere convergence of convolution powers, Illinnois J. Math. 43 (1999), 465-479 Zbl0963.28014MR1700602
- V. Losert, The strong sweeping out property for convolution powers, Ergodic Theory Dynam. Systems 21 (2001), 115-119 Zbl0972.37002MR1826663
- Ferenc Móricz, Absolutely convergent Fourier series and function classes, J. Math. Anal. Appl. 324 (2006), 1168-1177 Zbl1103.42003MR2266550
- V. V. Petrov, Sums of independent random variables, (1975), Springer-Verlag, New York Zbl0322.60042MR388499
- W.H. Young, On Indeterminate Forms, Proc. London Math. Soc. s2-8(1) (1910), 40-76 Zbl40.0334.01
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, (1959), Cambridge University Press, New York Zbl0085.05601MR107776
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.