Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment

Christopher M. Wedrychowicz[1]

  • [1] Indiana University South Bend Department of Mathematical Sciences 1700 Mishawaka Ave. South Bend 46634 (USA)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 2, page 401-415
  • ISSN: 0373-0956

Abstract

top
Bellow and Calderón proved that the sequence of convolution powers μ n f ( x ) = k μ n ( k ) f ( T k x ) converges a.e, when μ is a strictly aperiodic probability measure on such that the expectation is zero, E ( μ ) = 0 , and the second moment is finite, m 2 ( μ ) < . In this paper we extend this result to cases where m 2 ( μ ) = .

How to cite

top

Wedrychowicz, Christopher M.. "Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment." Annales de l’institut Fourier 61.2 (2011): 401-415. <http://eudml.org/doc/219719>.

@article{Wedrychowicz2011,
abstract = {Bellow and Calderón proved that the sequence of convolution powers $ \mu _n f(x)=\sum _\{k\in \mathbb\{Z\}\}\mu ^n(k)f(T^k x)$ converges a.e, when $\mu $ is a strictly aperiodic probability measure on $\mathbb\{Z\}$ such that the expectation is zero, $ E(\mu )=0$, and the second moment is finite, $ m_2(\mu )&lt;\infty $. In this paper we extend this result to cases where $ m_2(\mu )=\infty $.},
affiliation = {Indiana University South Bend Department of Mathematical Sciences 1700 Mishawaka Ave. South Bend 46634 (USA)},
author = {Wedrychowicz, Christopher M.},
journal = {Annales de l’institut Fourier},
keywords = {Convolution powers; a.e convergence; Fourier transform; Lipschitz class Lip$(\alpha )$; convolution powers; Lipschitz class },
language = {eng},
number = {2},
pages = {401-415},
publisher = {Association des Annales de l’institut Fourier},
title = {Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment},
url = {http://eudml.org/doc/219719},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Wedrychowicz, Christopher M.
TI - Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 401
EP - 415
AB - Bellow and Calderón proved that the sequence of convolution powers $ \mu _n f(x)=\sum _{k\in \mathbb{Z}}\mu ^n(k)f(T^k x)$ converges a.e, when $\mu $ is a strictly aperiodic probability measure on $\mathbb{Z}$ such that the expectation is zero, $ E(\mu )=0$, and the second moment is finite, $ m_2(\mu )&lt;\infty $. In this paper we extend this result to cases where $ m_2(\mu )=\infty $.
LA - eng
KW - Convolution powers; a.e convergence; Fourier transform; Lipschitz class Lip$(\alpha )$; convolution powers; Lipschitz class
UR - http://eudml.org/doc/219719
ER -

References

top
  1. Alexandra Bellow, Alberto P. Calderón, A weak-type inequality for convolution products, Harmonic analysis and partial differential equations (Chicago, IL, 1996) (1999), 41-48, Univ. Chicago Press, Chicago, IL Zbl0960.28011MR1743854
  2. Alexandra Bellow, Roger L. Jones, Joseph Rosenblatt, Almost everywhere convergence of weighted averages, Math. Ann. 293 (1992), 399-426 Zbl0736.28008MR1170516
  3. Alexandra Bellow, Roger L. Jones, Joseph Rosenblatt, Almost everywhere convergence of convolution powers, Ergodic Theory Dynam. Systems 14 (1994), 415-432 Zbl0818.28005MR1293401
  4. Shaul R. Foguel, On iterates of convolutions, Proc. Amer. Math. Soc. 47 (1975), 368-370 Zbl0299.43004MR374816
  5. V. Losert, A remark on almost everywhere convergence of convolution powers, Illinnois J. Math. 43 (1999), 465-479 Zbl0963.28014MR1700602
  6. V. Losert, The strong sweeping out property for convolution powers, Ergodic Theory Dynam. Systems 21 (2001), 115-119 Zbl0972.37002MR1826663
  7. Ferenc Móricz, Absolutely convergent Fourier series and function classes, J. Math. Anal. Appl. 324 (2006), 1168-1177 Zbl1103.42003MR2266550
  8. V. V. Petrov, Sums of independent random variables, (1975), Springer-Verlag, New York Zbl0322.60042MR388499
  9. W.H. Young, On Indeterminate Forms, Proc. London Math. Soc. s2-8(1) (1910), 40-76 Zbl40.0334.01
  10. A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, (1959), Cambridge University Press, New York Zbl0085.05601MR107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.